2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时延网络中 Euler-Lagrange 系统的分布式自适应协调控制

刘源 闵海波 王仕成 张金生 刘志国

刘源, 闵海波, 王仕成, 张金生, 刘志国. 时延网络中 Euler-Lagrange 系统的分布式自适应协调控制. 自动化学报, 2012, 38(8): 1270-1279. doi: 10.3724/SP.J.1004.2012.01270
引用本文: 刘源, 闵海波, 王仕成, 张金生, 刘志国. 时延网络中 Euler-Lagrange 系统的分布式自适应协调控制. 自动化学报, 2012, 38(8): 1270-1279. doi: 10.3724/SP.J.1004.2012.01270
LIU Yuan, MIN Hai-Bo, WANG Shi-Cheng, ZHANG Jin-Sheng, LIU Zhi-Guo. Distributed Adaptive Synchronization of Networked Euler-Lagrange Systems with Communication Delays. ACTA AUTOMATICA SINICA, 2012, 38(8): 1270-1279. doi: 10.3724/SP.J.1004.2012.01270
Citation: LIU Yuan, MIN Hai-Bo, WANG Shi-Cheng, ZHANG Jin-Sheng, LIU Zhi-Guo. Distributed Adaptive Synchronization of Networked Euler-Lagrange Systems with Communication Delays. ACTA AUTOMATICA SINICA, 2012, 38(8): 1270-1279. doi: 10.3724/SP.J.1004.2012.01270

时延网络中 Euler-Lagrange 系统的分布式自适应协调控制

doi: 10.3724/SP.J.1004.2012.01270
详细信息
    通讯作者:

    刘源

Distributed Adaptive Synchronization of Networked Euler-Lagrange Systems with Communication Delays

  • 摘要: 对一类含未知参数的Euler-Lagrange系统协调控制问题进行了研究, 提出了一种自适应控制算法. 该算法容许通信网络为最一般的伪强连通图, 并允许通信时延的存在. 对系统中领航者为静态和动态两种情况分别进行了研究, 设计了相应的控制器.研究结果表明,在仅有部分个体能够和领航者进行通信的情况下, 控制器能保证网络中其他个体最终和领航者趋于一致. 运用Lyapunov稳定性定理和Barbalat 定理等对自适应控制器的稳定性进行了证明,并利用数值仿真验证了算法的有效性.
  • [1] Dupree K, Patre P M, Wilcox Z D, Dixon W E. Asymptotic optimal control of uncertain nonlinear Euler-Lagrange systems. Automatica, 2011, 47(1): 99-107[2] Patre P M, MacKunis W, Johnson M, Dixon W E. Composite adaptive control for Euler-Lagrange systems with additive disturbances. Automatica, 2010, 46(1): 140-147[3] Patre P M, MacKunis W, Dupree K, Dixon W E. Modular adaptive control of uncertain Euler-Lagrange systems with additive disturbances. IEEE Transactions on Automatic Control, 2011, 56(1): 155-160[4] Ren W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. International Journal of Control, 2009, 82(11): 2137-2149[5] Meng Z Y, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46(12): 2092-2099[6] Khoo S, Xie L H, Man Z H. Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Transactions on Mechatronics, 2009, 14(2): 219-226[7] Min H, Sun F, Wang S, Li H. Distributed adaptive consensus algorithm for networked Euler-Lagrange systems. IET Control Theory Application, 2011, 5(1): 145-154[8] Mei J, Ren W, Ma G F. Containment control for multiple Euler-Lagrange systems with parametric uncertainties in directed networks. In: Proceedings of the 2011 American Control Conference. San Francisco, USA: IEEE, 2011. 2186 -2191[9] Nuo E, Ortega R, Basaez L. An adaptive controller for nonlinear teleoperators. Automatica, 2010, 46(1): 155-159[10] Nuo E, Basaez L, Ortega R, Spong M W. Position tracking for non-linear teleoperators with variable time delay. The International Journal of Robotics Research, 2009, 28(7): 895-910[11] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655 -661[12] Lopes O. Forced oscillations in nonlinear neutral differential equations. SIAM Journal on Applied Mathematics, 1975, 29(1): 196-207[13] Niculescu S I. Delay Effects on Stability: a Robust Control Approach. New York: Springer-Verlag, 2001[14] Cao Y C, Ren W, Li Y. Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication. Automatica, 2009, 45(5): 1299-1305[15] Meng Z Y, Ren W, Cao Y C, Zheng Y. Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Transactions on Systems, Man, and Cybernetics —Part B: Cybernetics, 2011, 41(1): 75-88[16] Kang W, Yeh H H. Co-ordinated attitude control of multi-satellite systems. International Journal of Robust and Nonlinear Control, 2002, 12(2-3): 185-205[17] Min H, Wang S, Sun F, Gao Z, Wang Y. Distributed six degree-of-freedom spacecraft formation control with possible switching topology. IET Control Theory Application, 2011, 5(9): 1120-1130[18] Arcak M. Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, 2007, 52(8): 1380-1390[19] Ren W. Distributed attitude alignment in spacecraft formation flying. International Journal of Adaptive Control and Signal Processing, 2007, 21(2-3): 95-113[20] Abdessameud A, Tayebi A. Attitude synchronization of a spacecraft formation without velocity measurement. In: Proceedings of IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 3719-3724[21] Chung S J, Ahsun U, Slotine J J E. Application of synchronization to formation flying spacecraft: Lagrangian approach. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 512-526[22] Wang P K C, Hadaegh F Y, Lau K. Synchronized formation rotation and attitude control of multiple free-flying spacecraft. Journal of Guidance, Control, and Dynamic, 1999, 22(1): 28-35[23] Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Leader-follower cooperative attitude control of multiple rigid bodies. Systems Control Letters, 2009, 58(6): 429-435[24] Wang Shuai, Yang Wen, Shi Hong-Bo. Consensus-based filtering algorithm with packet-dropping. Acta Automatica Sinica, 2010, 36(12): 1689-1696(王帅, 杨文, 侍洪波. 带丢包一致性滤波算法研究. 自动化学报, 2010, 36(12): 1689-1696)[25] Xiao F, Wang L. State consensus for multi-agent systems with switching topologies and time-varying delays. International Journal of Control, 2006, 79(10): 1277-1284[26] Lin P, Jia Y M, Li L. Distributed robust H∞ consensus control in directed networks of agents with time-delay. Systems Control Letters, 2008, 57(8): 643-653[27] Tian Y P, Liu C L. Consensus of multi-agent systems with diverse input and communication delays. IEEE Transactions on Automatic Control, 2008, 53(9): 2122-2128[28] Tian Y P, Liu C L. Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations. Automatica, 2009, 45(5): 1347-1353[29] Münz U, Papachristodoulou A, Allgwer F. Delay robustness in consensus problems. Automatica, 2010, 46(5): 1252 -1265[30] Münz U, Papachristodoulou A, Allgower F. Consensus in multi-agent systems with coupling delays and switching topology. IEEE Transactions on Automatic Control, 2011, 56(12): 2976-2982[31] Zhang L X. H∞ estimation for discrete-time piecewise homogeneous Markov jump linear systems. Automatica, 2009, 45(11): 2570-2576[32] Zhang L X, Jiang B. Stability of a class of switched linear systems with uncertainties and average dwell time switching. International Journal of Innovative Computing, Information and Control, 2010, 6(2): 667-676[33] Zhang L X, Lam J. Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions. IEEE Transactions on Automatic Control, 2010, 55(7): 1695-1701[34] Hale J K, Lunel S M V. Introduction to Functional Differential Equations. New York: Springer, 1993[35] Ren W. Multi-vehicle consensus with a time-varying reference state. Systems Control Letters, 2007, 56(7-8): 474-483
  • 加载中
计量
  • 文章访问数:  2014
  • HTML全文浏览量:  73
  • PDF下载量:  945
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-23
  • 修回日期:  2012-04-23
  • 刊出日期:  2012-08-20

目录

    /

    返回文章
    返回