-
摘要: 设计了一个基于神经网络的电力变压器运行状态检测系统.通过双网络判别法同时处 理气相色谱和电气实验数据,运用模糊技术对输入数据进行预处理,使用冗余属性增强学习能 力,利用VC维确定网络结构,并用SuperSAB算法进行训练.实验以及对系统的试用表明,该系 统在真实应用中取得了较好的效果.Abstract: A neural network based power transformer running state detection system is devised by using the pair network method to simultaneously process gas chromatogram data and electric experimental data. The system employs fuzzy technique to preprocess input data, uses redundant attributes to improve the learning ability, and utilizes VC dimension to determine network topology. SuperSAB algorithm is adopted to train the network. Experiments and field test of the system show that this system works well in real environment.
-
Key words:
- Neural networks /
- power transformer /
- fault diagnosis /
- fuzzy technique /
- expert system
计量
- 文章访问数: 2797
- HTML全文浏览量: 141
- PDF下载量: 970
- 被引次数: 0