2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维运动目标的多尺度智能递推识别新方法

张天序 翁文杰 冯军

张天序, 翁文杰, 冯军. 三维运动目标的多尺度智能递推识别新方法. 自动化学报, 2006, 32(5): 641-658.
引用本文: 张天序, 翁文杰, 冯军. 三维运动目标的多尺度智能递推识别新方法. 自动化学报, 2006, 32(5): 641-658.
ZHANG Tian-Xu, WENG Wen-Jie, FENG Jun. A Novel Multi-Scale Intelligent Recursive Recognition Method for Three-Dimensional Moving Targets. ACTA AUTOMATICA SINICA, 2006, 32(5): 641-658.
Citation: ZHANG Tian-Xu, WENG Wen-Jie, FENG Jun. A Novel Multi-Scale Intelligent Recursive Recognition Method for Three-Dimensional Moving Targets. ACTA AUTOMATICA SINICA, 2006, 32(5): 641-658.

三维运动目标的多尺度智能递推识别新方法

详细信息
    通讯作者:

    张天序

A Novel Multi-Scale Intelligent Recursive Recognition Method for Three-Dimensional Moving Targets

More Information
    Corresponding author: ZHANG Tian-Xu
  • 摘要: 在实际成像条件下,运动中的三维目标,其投影形状(Silhouette)是变化的,因而其可识别性也处于变动中.为了应对这类困难情况,本文定义了模式的动态特征空间和模式的动态可识别性等概念.讨论了建立多尺度三维目标特性视图特征模型的必要性,以及将目标运动特性一般约束用于目标序列图像识别的合理性.据此,提出了处理三维目标运动图像序列的多尺度智能递推识别方法(MUSIRR).构造了一种混合神经网络和逻辑决策模块的智能识别器,BP神经网和RBF网用作识别器的基本构成单元.在训练阶段,该识别器使用目标的多尺度二值特性视图模型的规则矩不变量为样本特征向量.在识别阶段,算法在递推识别序列目标图像过程中,充分利用了目标姿态不会突变以及有关成像过程的合理约束,达到了提高识别率目的.与文献中的基于单尺度特性视图的三维目标识别方法相比,本文的方法训练过程简单,只需较少的目标特性视图模型样本,不仅能处理单帧图像,更能有效处理序列图像.对几类飞机目标的大规模模拟实验结果证实了本文方法的合理性和有效性.
  • [1]
  • 加载中
计量
  • 文章访问数:  2929
  • HTML全文浏览量:  65
  • PDF下载量:  2751
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-26
  • 修回日期:  2006-01-23
  • 刊出日期:  2006-09-20

目录

    /

    返回文章
    返回