[1]
|
Campisi P, Egiazarian K. Blind Image Deconvolution-Theory and Applications. Boca Raton: CRC Press, 2007. 1-32
|
[2]
|
[2] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259-268
|
[3]
|
[3] Wang Xu-Dong, Feng Xiang-Chu, Huo Lei-Gang. Iteratively reweighted anisotropic-TV based multiplicative noise removal model. Acta Automatica Sinica, 2012, 38(3): 444-451 (in Chinese)
|
[4]
|
[4] Kim D, Sra S, Dhillon I S. Tackling box-constrained optimization via a new projected quasi-Newton approach. SIAM Journal on Scientific Computing, 2010, 32(6): 3548-3563
|
[5]
|
[5] Morini B, Pocelli M, Chan R H. A reduced Newton method for constrained linear least-squares problems. Journal of Computational and Applied Mathematics, 2010, 233(9): 2200-2212
|
[6]
|
[6] Becky A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 2009, 18(11): 2419-2434
|
[7]
|
[7] Chan R H, Ma J. A multiplicative iterative algorithm for box-constrained penalized likelihood image restoration. IEEE Transactions on Image Processing, 2012, 21(7): 3168-3181
|
[8]
|
[8] Chan R H, Tao M, Yuan X M. Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM Journal on Imaging Sciences, 2013, 6(1): 680-697
|
[9]
|
[9] Ma J. Multiplicative algorithms for maximum penalized likelihood inversion with non-negative constraints and generalized error distributions. Communications in Statistics-Theory and Methods, 2006, 35(5): 831-848
|
[10]
|
Ma J. Positively constrained multiplicative iterative algorithm for maximum penalized likelihood tomographic reconstruction. IEEE Transactions on Nuclear Science, 2010, 57(1): 181-192
|
[11]
|
Chan R H, Liang H X, Ma J. Positively constrained total variation penalized image restoration. Advances in Adaptive Data Analysis, 2011, 3(1-2): 187-201
|
[12]
|
Wen Y W, Yip A M. Adaptive parameter selection for total variation image deconvolution. Numerical Mathematics-Theory Methods and Applications, 2009, 2(4): 427-438
|
[13]
|
Ng M, Weiss P, Yuan X. Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods. SIAM Journal on Scientific Computing, 2010, 32(5): 2710-2736
|
[14]
|
Afonso M V, Bioucas-Dias J M, Figueiredo M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image Processing, 2011, 20(3): 681-695
|
[15]
|
Wen Y W, Chan R H. Parameter selection for total-variation-based image restoration using discrepancy principle. IEEE Transactions on Image Processing, 2012, 21(4): 1770-1781
|
[16]
|
Blomgren P, Chan T F. Modular solvers for image restoration problems using the discrepancy principle. Numerical Linear Algebra with Applications, 2002, 9(5): 347-358
|
[17]
|
Liao H Y, Li F, Ng M K. Selection of regularization parameter in total variation image restoration. Journal of the Optical Society of America A-Optics Image Science and Vision, 2009, 26(11): 2311-2320
|
[18]
|
Engl H W, Grever W. Using the L-curve for determining optimal regularization parameters. Numerische Mathematik, 1994, 69(1): 561-580
|
[19]
|
An Yao-Zu, Lu Yao, Zhao Hong. An adaptive-regularized image super-resolution. Acta Automatica Sinica, 2012, 38(4): 601-608 (in Chinese)
|
[20]
|
Lin Y Z, Wohlberg B, Guo H B. UPRE method for total variation parameter selection. Signal Processing, 2010, 90(8): 2546-2551
|
[21]
|
Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97
|
[22]
|
He B S, Yuan X M. Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM Journal on Imaging Sciences, 2012, 5(1): 119-149
|
[23]
|
Papadakis N, Peyr G, Oudet D. Optimal transport with proximal splitting. SIAM Journal on Imaging Sciences, 2014, 7(1): 212-238
|
[24]
|
Zhang Wen-Juan, Feng Xiang-Chu, Wang Xu-Dong. Mumford-Shah model based on weighted total generalized variation. Acta Automatica Sinica, 2012, 38(12): 1913-1922 (in Chinese)
|
[25]
|
Raguet H, Fadili J, Peyr G. A generalized forward-backward splitting. SIAM Journal on Imaging Sciences, 2013, 6(3): 1199-1226
|
[26]
|
Xue Qian, Yang Cheng-Yi, Wang Hua-Xiang. Alternating direction method for salt-and-pepper denoising. Acta Automatica Sinica, 2013, 39(12): 2071-2076 (in Chinese)
|
[27]
|
Wu C L, Tai X C. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM Journal on Imaging Sciences, 2010, 3(3): 300-339
|
[28]
|
Wang Y L, Yang J F, Yin W T, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences, 2008, 1(3): 248-272
|
[29]
|
Combettes P L, Pesquet J C. Fixed-point Algorithms for Inverse Problems in Science and EngineeringChapter 10: Proximal Splitting Methods in Signal Processing. New York: Springer, 2011. 185-212
|