2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乳腺X线图像结构扭曲检测的研究

张胜君 陈后金 李艳凤 姚畅 程琳

张胜君, 陈后金, 李艳凤, 姚畅, 程琳. 乳腺X线图像结构扭曲检测的研究. 自动化学报, 2014, 40(8): 1764-1772. doi: 10.3724/SP.J.1004.2014.01764
引用本文: 张胜君, 陈后金, 李艳凤, 姚畅, 程琳. 乳腺X线图像结构扭曲检测的研究. 自动化学报, 2014, 40(8): 1764-1772. doi: 10.3724/SP.J.1004.2014.01764
ZHANG Sheng-Jun, CHEN Hou-Jin, LI Yan-Feng, YAO Chang, CHENG Lin. Detection of Architectural Distortion in Mammograms. ACTA AUTOMATICA SINICA, 2014, 40(8): 1764-1772. doi: 10.3724/SP.J.1004.2014.01764
Citation: ZHANG Sheng-Jun, CHEN Hou-Jin, LI Yan-Feng, YAO Chang, CHENG Lin. Detection of Architectural Distortion in Mammograms. ACTA AUTOMATICA SINICA, 2014, 40(8): 1764-1772. doi: 10.3724/SP.J.1004.2014.01764

乳腺X线图像结构扭曲检测的研究

doi: 10.3724/SP.J.1004.2014.01764
基金项目: 

国家自然科学基金(61271305,61201363),高等学校博士学科点专项科研基金(20110009110001),中央高校基本科研业务费专项资金(2011JBM003)资助

详细信息
    作者简介:

    陈后金 北京交通大学电子与信息工程学院教授. 主要研究方向为数字信号和图像处理. E-mail:hjchen@bjtu.edu.cn

    通讯作者:

    张胜君 北京交通大学电子信息工程学院博士研究生. 主要研究方向为生物医学图像处理及应用.E-mail:10111031@bjtu.edu.cn

Detection of Architectural Distortion in Mammograms

Funds: 

Supported by National Natural Science Foundation of China (61271305, 61201363), Research Fund for the Doctoral Program of Higher Education of China (20110009110001), and Fundamental Research Funds for the Central Universities of China (2011J BM003)

  • 摘要: 针对乳腺X线图像结构扭曲 (Architectural distortion,AD)检测假阳性率偏高的问题,提出了一种新的乳腺X线图像结构扭曲 检测方法相似度收敛指数(Similarity convergence index,SCI)方法.首先利用马氏距离比计算出毛刺的相似度,然后通过计算相似度加权的收敛指数增强放射状毛 刺,最后提取出收敛指数的局部最大值作为候选点,并对这些候选点进行分类,检测出结构扭曲. 该方法在Mini-MIAS (Mammographic Image Analysis Society)乳腺图像和北京大学人民医院乳腺中心乳腺图像上进行验证,实验结果表明,本文提出的方法有效降低了假阳 性率,同时适用于脂肪型乳腺X线图像和致密型乳腺X线图像.
  • [1] Tang J S, Rangayyan R M, Xu J, El Naqa I, Yang Y Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(2): 236-251
    [2] [4] Baker J A, Rosen E L, Lo J Y, Gimenez E I, Walsh R, Soo M S. Computer-aided detection (CAD) in screening mammography: Sensitivity of commercial CAD systems for detecting architectural distortion. American Journal of Roentgenology, 2003, 181(4): 1083-1088
    [3] [6] Rangayyan R M, Ayres F J. Gabor filters and phase portraits for the detection of architectural distortion in mammograms. Medical and Biological Engineering and Computing, 2006, 44(10): 883-894
    [4] [7] Guo Q, Shao J, Ruiz V. Investigation of support vector machine for the detection of architectural distortion in mammographic images. Journal of Physics: Conference Series, 2005, 15: 88-94
    [5] [8] Sampat M P, Whitman G J, Markey M K, Bovik A C. Evidence based detection of spiculated masses and architectural distortions. In: Proceedings of the 2005 SPIE 5747: Medical Imaging. San Diego, USA: SPIE, 2005. 26-37
    [6] [9] Banik S, Rangayyan R M, Desautels J E L. Detection of architectural distortion in prior mammograms. IEEE Transactions on Medical Imaging, 2011, 30(2): 279-294
    [7] Ayres F J, Rangayyan R M. Reduction of false positives in the detection of architectural distortion in mammograms by using a geometrically constrained phase portrait model. International Journal of Computer Assisted Radiology and Surgery, 2007, 1(6): 361-369
    [8] Biswas S K, Mukherjee D P. Recognizing architectural distortion in mammogram: a multiscale texture modeling approach with GMM. IEEE Transactions on Biomedical Engineering, 2011, 58(7): 2023-2030
    [9] Gong Zhu-Lin, Chen Ying, Zhang Lu. The detection of architectural distortion in mammograms by using support vector machine. Journal of Shanghai Jiaotong University, 2009, 43(7): 1038-1042 (龚著琳, 陈瑛, 章鲁. 用支持向量机检测乳腺X线影像中的结构扭曲. 上海交通大学学报, 2009, 43(7): 1038-1042)
    [10] Xing Xiao-Jie, Xu Xiang-Min, Xiao Yue, Zhou Feng-Le. Detection algorithm on mass focus in mammary dense region. Microcomputer Information, 2009, 25(18): 174-176 (邢晓洁, 徐向民, 肖跃, 周丰乐. 乳腺X线图像中致密区域肿块的检测算法. 微计算机信息, 2009, 25(18): 174-176)
    [11] te Brake G M, Karssemeijer N, Hendriks J H. An automatic method to discriminate malignant masses from normal tissue in digital mammograms. Physics in Medicine and Biology, 2000, 45(10): 2843-2857
  • 加载中
计量
  • 文章访问数:  1999
  • HTML全文浏览量:  79
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-25
  • 修回日期:  2013-05-21
  • 刊出日期:  2014-08-20

目录

    /

    返回文章
    返回