2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反向P-M扩散的钢轨表面缺陷视觉检测

贺振东 王耀南 毛建旭 印峰

贺振东, 王耀南, 毛建旭, 印峰. 基于反向P-M扩散的钢轨表面缺陷视觉检测. 自动化学报, 2014, 40(8): 1667-1679. doi: 10.3724/SP.J.1004.2014.01667
引用本文: 贺振东, 王耀南, 毛建旭, 印峰. 基于反向P-M扩散的钢轨表面缺陷视觉检测. 自动化学报, 2014, 40(8): 1667-1679. doi: 10.3724/SP.J.1004.2014.01667
HE Zhen-Dong, WANG Yao-Nan, MAO Jian-Xu, YIN Feng. Research on Inverse P-M Diffusion-based Rail Surface Defect Detection. ACTA AUTOMATICA SINICA, 2014, 40(8): 1667-1679. doi: 10.3724/SP.J.1004.2014.01667
Citation: HE Zhen-Dong, WANG Yao-Nan, MAO Jian-Xu, YIN Feng. Research on Inverse P-M Diffusion-based Rail Surface Defect Detection. ACTA AUTOMATICA SINICA, 2014, 40(8): 1667-1679. doi: 10.3724/SP.J.1004.2014.01667

基于反向P-M扩散的钢轨表面缺陷视觉检测

doi: 10.3724/SP.J.1004.2014.01667
基金项目: 

国家自然科学基金(60835004,61072121,61172160,61175075),河南省科技攻关计划(142102210514)资助

详细信息
    作者简介:

    王耀南 湖南大学电气与信息工程学院教授. 1994 年获湖南大学控制科学与工程专业博士学位. 主要研究方向为智能控制,图像处理和智能机器人.E-mail:yaonan@hnu.cn

    通讯作者:

    贺振东 湖南大学电气与信息工程学院博士研究生,郑州轻工业学院讲师. 主要研究方向为图像处理和智能机器人.E-mail:hezhendong itl@163.com

Research on Inverse P-M Diffusion-based Rail Surface Defect Detection

Funds: 

Supported by National Natural Science Foundation of China (60835004, 61072121, 61172160, 61175075), and the Key Science and Technology Program of Henan Province(142102210514)

  • 摘要: 研制了一种基于反向P-M(Perona-Malik)扩散的钢轨表面缺陷视觉检测装置,该装置可 自动获取钢轨表面图像,并实现实时检测与定位钢轨表面缺陷. 钢轨图像具有光 照变化、反射不均、特征少等特点,为了在运动过程中 从复杂的钢轨表面图像提取缺陷,首先将图像进行反向P-M扩散,然后将扩散后的图像与原图像进 行差分,从而减小了上述因素的影响,最后将差分图像进行二值化操作,根据 缺陷边缘特性和面积进行滤波,分割出缺陷图像. 实验仿真和现场测试结果表明,该方法能很好地识别块状缺陷和线状缺陷,并且检测速度、精度、识别 率和误检率都能很好地满足要求.
  • [1] Jasiūnien E, žukauskas E. The ultrasonic wave interaction with porosity defects in welded rail head. ULTRAGARSAS (ULTRASOUND), 2010, 65(1): 12-18
    [2] [2] Vidaud M, Zwanenburg W J. Current situation on rolling contact fatiguea rail wear phenomenon. In: Proceedings of the 9th Swiss Transport Research Conference. Monte Verit, Swiss, 2009. 1-27
    [3] [3] Marino F, Distante A, Mazzeo P L, Stella E. A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts. IEEE Transactions on Systems Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3): 418-428
    [4] [4] Mandriota C, Stella E, Nitti M, Ancona N, Distante A. Rail corrugation detection by Gabor filtering. In: Proceedings of IEEE International Conference on Image Processing. Thessaloniki: IEEE, 2001. 626-628
    [5] [5] Mandriota C, Nitti M, Ancona N, Stella E, Distante A. Filter-based feature selection for rail defect detection. Machine Vision and Applications, 2004, 15(4): 179-185
    [6] [6] Papaelias M P, Roberts C, Davis C L. A review on non-destructive evaluation of rails: state-of-the-art and future development. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and rapid transit, 2008, 222(4): 367-384
    [7] [7] Deutschl E, Gasser C, Niel A, Werschonig J. Defect detection on rail surfaces by a vision based system. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy: IEEE, 2004. 507-511
    [8] [8] Shah M. Automated Visual Inspection/Detection of Railroad Track, Technical Report, BD550-08, Computer Vision Lab, University of Central Florida, USA, 2010
    [9] [9] Li Q Y, Ren S W. A real-time visual inspection system for discrete surface defects of rail heads. IEEE Transactions on Instrumentation and Measurement, 2012, 61(8): 2189-2199
    [10] Xie X H. A review of recent advances in surface defect detection using texture analysis techniques. Electronic Letters on Computer Vision and Image Analysis, 2008, 7(3): 1-22
    [11] Tsai D M, Chao S M. An anisotropic diffusion-based defect detection for sputtered surfaces with inhomogeneous textures. Image Vision Computing, 2005, 23(3): 325-338
    [12] Tsai D M, Chang C C, Chao S M. Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion. Image Vision Computing, 2010, 28(3): 491-501
    [13] Chao S M, Tsai D M. An anisotropic diffusion-based defect detection for low-contrast glass substrates. Image Vision Computing, 2008, 26(2): 187-200
    [14] Chao S M, Tsai D M. Anisotropic diffusion with generalized diffusion coefficient function for defect detection in low-contrast surface images. Pattern Recognition, 2010, 43: 1917-1931
    [15] Chao S M, Tsai D M. An improved anisotropic diffusion model for detail and edge-preserving smoothing. Pattern Recognition, 2010, 31(13): 2012-2023
    [16] Chao S M, Tsai D M, Tseng Y H, Jhang Y R. Defect detection in low-contrast glass substrates using anisotropic diffusion. In: Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 654-657
    [17] Chao S M, Tsai D M, Li W C, Chiu W Y. A generalized anisotropic diffusion for defect detection in low-contrast surfaces. In: Proceedings of the 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010. 4408-4411
    [18] Mr
    [19] zek P, Weickert J, Steidl G. Correspondences between wavelet shrinkage and nonlinear diffusion. Lecture Notes in Computer Science, 2003, 2695: 101-116
    [20] Shih A C, Liao H M, Lu C S. A new iterated two-band diffusion equation-theory and its application. IEEE Transactions on Image Processing, 2003, 12(4): 466-476
    [21] Yue Y, Croitoru M M, Bidani A, Zwischenberger J B, Clark J W Jr. Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images. IEEE Transactions on Medical Imaging, 2006, 25(3): 297-311
    [22] Liu Wei-Wei, Yan Yun-Hui, Li Zhan-Yu, Li Jun. An image filtering algorithm for online detection system of steel strip surface defects. Journal of Northeastern University: Natural Science, 2009, 30(3): 430-433(刘伟嵬, 颜云辉, 李瞻宇, 李骏. 带钢表面缺陷在线检测系统的图像滤波算法. 东北大学学报: 自然科学版, 2009, 30(3): 430-433)
    [23] Magel E E. Rolling Contact Fatigue: a Comprehensive Review, Technical Report, DTFR53-05-H-00203, Centre for Surface Technology, Ottawa, Canada, 2011
    [24] Weickert J. Anisotropic Diffusion in Image Processing. Stuttgart: Teubner-Verlag, 1998
    [25] Li Xiao-Guang, Shen Lan-Sun, Lam Kin-Man, Wang Su-Yu. An image magnification method with GVF-based anisotropic diffusion model. Acta Electronica Sinica, 2008, 36(9): 1755-1758(李晓光, 沈兰荪, Lam Kin-Man, 王素玉. 一种基于GVF各向异性扩散模型的图像放大算法. 电子学报, 2008, 36(9): 1755-1758)
    [26] Meng Xiang-Lin, Wang Zheng-Zhi. Image diffusion based on visual masking effect. Acta Automatica Sinica, 2011, 37(1): 21-27(孟祥林, 王正志. 基于视觉掩蔽效应的图像扩散. 自动化学报, 2011, 37(1): 21-27)
    [27] Li Can-Fei, Wang Yao-Nan, Xiao Chang-Yan, Lu Xiao. A new speckle reducing anisotropic diffusion for ultrasonic speckle. Acta Automatica Sinica, 2012, 38(3): 412-419(李灿飞, 王耀南, 肖昌炎, 卢笑. 用于超声斑点噪声滤波的各向异性扩散新模型. 自动化学报, 2012, 38(3): 412-419)
    [28] Zheng Qiang, Dong En-Qing. Narrow band active contour model for local segmentation of medical and texture images. Acta Automatica Sinica, 2013, 39(1): 21-30(郑强, 董恩清. 窄带主动轮廓模型及在医学和纹理图像局部分割中的应用. 自动化学报, 2013, 39(1): 21-30)
    [29] Wang Zhi-Ming, Zhang Li. Local-structure-adapted image diffusion. Acta Automatica Sinica, 2009, 35(3): 244-250(王志明, 张丽. 局部结构自适应的图像扩散. 自动化学报, 2009, 35(3): 244-250)
    [30] Cheng Jian-Gang, Tian Jie, He Yu-Liang, Yang Xin. Fingerprint enhancement algorithm based on nonlinear diffusion filter. Acta Automatica Sinica, 2004, 30(6): 854-862(程建刚, 田捷, 何余良, 杨鑫. 基于非线性扩散滤波的指纹增强算法. 自动化学报, 2004, 30(6): 854-862)
    [31] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639
  • 加载中
计量
  • 文章访问数:  2351
  • HTML全文浏览量:  124
  • PDF下载量:  2269
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-07
  • 修回日期:  2013-12-20
  • 刊出日期:  2014-08-20

目录

    /

    返回文章
    返回