2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于用户搜索行为的query-doc关联挖掘

朱亮 陆静雅 左万利

朱亮, 陆静雅, 左万利. 基于用户搜索行为的query-doc关联挖掘. 自动化学报, 2014, 40(8): 1654-1666. doi: 10.3724/SP.J.1004.2014.01654
引用本文: 朱亮, 陆静雅, 左万利. 基于用户搜索行为的query-doc关联挖掘. 自动化学报, 2014, 40(8): 1654-1666. doi: 10.3724/SP.J.1004.2014.01654
ZHU Liang, LU Jing-Ya, ZUO Wan-Li. Query-doc Relation Mining Based on User Search Behavior. ACTA AUTOMATICA SINICA, 2014, 40(8): 1654-1666. doi: 10.3724/SP.J.1004.2014.01654
Citation: ZHU Liang, LU Jing-Ya, ZUO Wan-Li. Query-doc Relation Mining Based on User Search Behavior. ACTA AUTOMATICA SINICA, 2014, 40(8): 1654-1666. doi: 10.3724/SP.J.1004.2014.01654

基于用户搜索行为的query-doc关联挖掘

doi: 10.3724/SP.J.1004.2014.01654
基金项目: 

国家自然科学基金(60973040,61300148),中国博士后基金(2012M510879),吉林省重点科技攻关项目(20130206051GX)资助

详细信息
    作者简介:

    朱亮 吉林大学计算机科学与技术学院硕士研究生. 2011 年获吉林大学计算机科学与技术学院理学学士学位. 主要研究方向为网络搜索引擎,信息检索与排序学习理论.E-mail:zhuliang11@mails.jlu.edu.cn

    通讯作者:

    左万利 吉林大学计算机科学与技术学院教授,2005 年获吉林大学计算机软件与理论专业工学博士学位. 主要研究方向为数据库,数据挖掘,机器学习,信息检索,搜索引擎.E-mail:wanli@jlu.edu.cn

Query-doc Relation Mining Based on User Search Behavior

Funds: 

Supported by National Natural Science Foundation of China (60973040, 61300148), Science Foundation for China Postdoctor (2012M510879) and Key Scientific and Technological Break-through Program of Jilin Province (20130206051GX)

  • 摘要: query和doc之间的关联关系是搜索引擎期望获取的一类有价值的信息. query和doc间准确的关联分析不仅可以帮助搜索结果排序,也在query和doc之间的桥接中起到重要作用,以实现相关query和doc之间的信息传递,有利于更深入的query理解和doc理解,并在此基础上开展相关应用.本文提出了一种基于用户搜索行为的query和doc关联关系挖掘算法,该方法首先对用户搜索点击日志中的数据进行整理与分析,构建query与doc间的二部图,再通过采用马尔可夫随机游走模型对二部图数据进行建模,挖掘二部图中的点击数据和session数据,最终挖掘出点击日志中用户没有点击到的doc数据,从而预测出query和doc间的隐含关联关系,同时也可以利用该算法得到query和query潜在的关联关系.基于以上理论基础,我们实现了一套完整的日志挖掘系统,通过大量的实验对比,该系统在各方面均取得了优异的表现,其中对检索结果相关性的性能提升可以达到71.23%,这充分表明,本文所提出的理论和算法能够很好地解决query和doc之间的隐含关系挖掘问题,为提高搜索结果的召回率、实现查询推荐和检索结果聚类奠定了良好的前提基础.
  • [1] Bhatia S, Majumdar D, Mitra P. Query suggestions in the absence of query logs. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. Beijing, China: ACM, 2011. 795-804
    [2] [2] Li X. Understanding the semantic structure of noun phrase queries. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics Association for Computational Linguistics. Uppsala, Sweden: ACL, 2010. 1337-1345
    [3] [3] Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2 Association for Computational Linguistics. Suntec, Singapore: ACL, 2009. 1003-1011
    [4] [4] Peters S, Jacob Y, Denoyer L, Gallinari P. Iterative multi-label multi-relational classification algorithm for complex social networks. Social Network Analysis and Mining, 2012, 2(1): 17-29
    [5] [5] Surdeanu M, Tibshirani J, Nallapati R, Manning C D, Center A I. Multi-instance multi-label learning for relation extraction. In: Proceedings of the 2012 Conference on Empirical Methods in Natural Language Processing and Natural Language Learning (EMNLP-CoNLL). Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 455-465
    [6] [6] Anagnostopoulos A, Becchetti L, Castillo C, Gionis A. An optimization framework for query recommendation. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2010. 161-170
    [7] [7] Liu Y, Miao J, Zhang M, Ma S, Ru L. How do users describe their information need: query recommendation based on snippet click model. Expert Systems with Applications, 2011, 38(11): 13847-13856
    [8] [8] Yan X H, Guo J F, Cheng X Q. Context-aware query recommendation by learning high-order relation in query logs. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. Glasgow, UK: ACM, 2011. 2073-2076
    [9] Li Wen-Qing, Sun Xin, Zhang Chang-You, Feng Ye. A semantic similarity measure between ontological concepts. Acta Automatica Sinica, 2012, 38(2): 229-235 (李文清, 孙新, 张常有, 冯烨. 一种本体概念的语义相似度计算方法. 自动化学报, 2012, 38(2): 229-235)
    [10] Zhou Lin, Ping Xi-Jian, Xu Sen, Zhang Tao. Cluster ensemble based on spectral clustering. Acta Automatica Sinica, 2012, 38(8): 1335-1342 (周林, 平西建, 徐森, 张涛. 基于谱聚类的聚类集成算法. 自动化学报, 2012, 38(8): 1335-1342)
    [11] Wang Li, Wu Cheng-Dong, Chen Dong-Yue, Li Meng-Xin, Chen Li. Exploring linear homeomorphic clusters on nonlinear manifold. Acta Automatica Sinica, 2012, 38(8): 1308-1320 (王力, 吴成东, 陈东岳, 李孟歆, 陈莉. 非线性流形上的线性结构聚类挖掘. 自动化学报, 2012, 38(8): 1308-1320)
    [12] Yang Yi, Han De-Qiang, Han Chong-Zhao. Evidence combination based on multi-criteria rank-level fusion. Acta Automatica Sinica, 2012, 38(5): 823-831 (杨艺, 韩德强, 韩崇昭. 基于多准则排序融合的证据组合方法. 自动化学报, 2012, 38(5): 823-831)
    [13] Xiang B, Jiang D, Pei J, Sun X, Chen E H, Li H. Context-aware ranking in web search. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Geneva, Switzerland Cochairs: ACM, 2010. 451-458
    [14] Chang L J, Xu Y J, Qin L. Context-sensitive document ranking. Journal of Computer Science and Technology, 2010, 25(3): 444-457
    [15] Chen L J, Papakonstantinou Y. Context-sensitive ranking for document retrieval. In: Proceedings of the 2011 International Conference on Management of Data. Athens, Greece: ACM, 2011. 757-768
    [16] Zhuang Z M, Cucerzan S. Exploiting semantic query context to improve search ranking. In: Proceedings of the 2008 IEEE International Conference on Semantic Computing. Santa Clara, California, USA: IEEE, 2008. 50-57
    [17] Nguyen T V T, Moschitti A. End-to-end relation extraction using distant supervision from external semantic repositories. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA: ACL, 2011: 277-282
    [18] Riedel S, Yao L, Mccallum A. Modeling relations and their mentions without labeled text. Machine Learning and Knowledge Discovery in Databases, 2010, 6323(3): 148-163
  • 加载中
计量
  • 文章访问数:  2036
  • HTML全文浏览量:  69
  • PDF下载量:  1968
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-26
  • 修回日期:  2014-02-12
  • 刊出日期:  2014-08-20

目录

    /

    返回文章
    返回