[1]
|
Yu Yue, Sun Wei-Dong. Target spectra guided spectral unmixing for hyperspectral images. Chinese High Technology Letters, 2012, 22(3): 240-248 (于钺, 孙卫东. 目标光谱指导下的高光谱图像混合像元分解方法. 高技术通讯, 2012, 22(3): 240-248)
|
[2]
|
[2] Bioucas-Dias J M, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379
|
[3]
|
[3] Zhu F Y, Wang Y, Xiang S M, Fan B, Pan C H. Structured sparse method for hyperspectral unmixing. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 101-118
|
[4]
|
[4] Atkinson P M. Mapping sub-pixel boundaries from remote sensed images. In: Proceedings of the Innovations in GIS 4. London, UK: Taylor Francis, 1997. 166-180
|
[5]
|
[5] Muad A M, Foody G M. Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution. International Journal of Applied Earth Observation and Geoinformation, 2012, 15: 79-91
|
[6]
|
[6] Atkinson P M. Issues of uncertainty in super-resolution mapping and their implications for the design of an inter-comparison study. International Journal of Remote Sensing, 2009, 30(20): 5293-5308
|
[7]
|
[7] Boucher A, Kyriakidis P C, Cronkite-Ratcliff C. Geostatistical solutions for super-resolution land cover mapping. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 272-283
|
[8]
|
[8] Mertens K C, De Baets B, Verbeke L P C, De Wulf R R. Direct sub-pixel mapping exploiting spatial dependence. In: Proceedings of IEEE International Symposium on Geoscience and Remote Sensing. New York, USA: IEEE, 2004, 5: 3046-3049
|
[9]
|
[9] Mertens K C, de Baets B, Verbeke L P C, de Wulf R R. A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models. International Journal of Remote Sensing, 2006, 27(15): 3293-3310
|
[10]
|
Verhoeye J, De Wulf R. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sensing of Environment, 2002, 79(1): 96-104
|
[11]
|
Mertens K C, Verbeke L P C, Ducheyne E I, De Wulf R R. Using genetic algorithms in sub-pixel mapping. International Journal of Remote Sensing, 2003, 24(21): 4241-4247
|
[12]
|
Atkinson P M. Sub-pixel target mapping from soft-classified, remotely sensed imagery. Photogrammetric Engineering and Remote Sensing, 2005, 71(7): 839-846
|
[13]
|
Villa A, Chanussot J, Benediktsson J A, Jutten C. Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 521-533
|
[14]
|
Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. Equation of state calculations by fast computing machines. Journal of Physics, 1958, 21: 1087-1092
|
[15]
|
Zhong Y F, Zhang L P. Remote sensing image subpixel mapping based on adaptive differential evolution. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(5): 1306-1329
|
[16]
|
Dong W S, Zhang D, Shi G M, Wu X L. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857
|
[17]
|
Pan Z X, Yu J, Huang H J, Hu S X, Zhang A W, Ma H B, Sun W D. Super-resolution based on compressive sensing and structural self-similarity for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4864-4876
|
[18]
|
Congalton R G, Green K. Assessing the Accuracy of Remote Sensed Data: Principles and Pratices. New York: Lewis Publishers, 1999
|
[19]
|
Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 1960, 20: 37-46
|