2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部连续性与全局相似性的光谱保持型亚像元映射

黄慧娟 禹晶 肖创柏 孙卫东

黄慧娟, 禹晶, 肖创柏, 孙卫东. 基于局部连续性与全局相似性的光谱保持型亚像元映射. 自动化学报, 2014, 40(8): 1612-1622. doi: 10.3724/SP.J.1004.2014.01612
引用本文: 黄慧娟, 禹晶, 肖创柏, 孙卫东. 基于局部连续性与全局相似性的光谱保持型亚像元映射. 自动化学报, 2014, 40(8): 1612-1622. doi: 10.3724/SP.J.1004.2014.01612
HUANG Hui-Juan, YU Jing, XIAO Chuang-Bai, SUN Wei-Dong. Spectrum preserving Sub-pixel Mapping Based on Local Connectivity and Nonlocal Similarity. ACTA AUTOMATICA SINICA, 2014, 40(8): 1612-1622. doi: 10.3724/SP.J.1004.2014.01612
Citation: HUANG Hui-Juan, YU Jing, XIAO Chuang-Bai, SUN Wei-Dong. Spectrum preserving Sub-pixel Mapping Based on Local Connectivity and Nonlocal Similarity. ACTA AUTOMATICA SINICA, 2014, 40(8): 1612-1622. doi: 10.3724/SP.J.1004.2014.01612

基于局部连续性与全局相似性的光谱保持型亚像元映射

doi: 10.3724/SP.J.1004.2014.01612
基金项目: 

国家自然科学基金(61171117),国家科技支撑计划项目(2012BAH31B01),北京市教育委员会科技计划重点项目(kz201310028035)资助

详细信息
    作者简介:

    禹晶 清华大学电子工程系博士后.2011 年获清华大学电子工程系博士学位. 主要研究方向为图像处理与模式识别. E-mail:yujing@tsinghua.edu.cn

    通讯作者:

    黄慧娟 清华大学电子工程系博士研究生. 2009 年获得山东大学信息科学与工程学院学士学位. 主要研究方向为图像处理与模式识别.E-mail:hhj09@mails.tsinghua.edu.cn

Spectrum preserving Sub-pixel Mapping Based on Local Connectivity and Nonlocal Similarity

Funds: 

Supported by National Natural Science Foundation (61171117), National Science and Technology Pillar Program (2012BAH31B01), Key Project of the Science and Technology Development Program of China (kz201310028035)

  • 摘要: 遥感图像的像元级分类精度受混合像元的影响. 亚像元映射以像元分解获得的丰度值为基础,在地物分布规律的约束下,细化估计各类地物的亚像元级分布模式. 本文同时考虑了地物分布的空间与光谱信息,提出了一种基于局部连续性与全局相似性的光谱保持型亚像元映射算法. 针对地物的空间分布特性,提出了利用类内离散度对局部连续性进行建模,并通过相似分布像元表示误差引入全局相似性约束项. 针对地物的光谱特性,采用最小化光谱误差约束了亚像元映射过程中的光谱无失真性. 模拟数据与真实数据上的实验结果表明,本文算法比其他同类算法具有更高的估计精度,且更适合于实际应用.
  • [1] Yu Yue, Sun Wei-Dong. Target spectra guided spectral unmixing for hyperspectral images. Chinese High Technology Letters, 2012, 22(3): 240-248 (于钺, 孙卫东. 目标光谱指导下的高光谱图像混合像元分解方法. 高技术通讯, 2012, 22(3): 240-248)
    [2] [2] Bioucas-Dias J M, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379
    [3] [3] Zhu F Y, Wang Y, Xiang S M, Fan B, Pan C H. Structured sparse method for hyperspectral unmixing. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 101-118
    [4] [4] Atkinson P M. Mapping sub-pixel boundaries from remote sensed images. In: Proceedings of the Innovations in GIS 4. London, UK: Taylor Francis, 1997. 166-180
    [5] [5] Muad A M, Foody G M. Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution. International Journal of Applied Earth Observation and Geoinformation, 2012, 15: 79-91
    [6] [6] Atkinson P M. Issues of uncertainty in super-resolution mapping and their implications for the design of an inter-comparison study. International Journal of Remote Sensing, 2009, 30(20): 5293-5308
    [7] [7] Boucher A, Kyriakidis P C, Cronkite-Ratcliff C. Geostatistical solutions for super-resolution land cover mapping. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 272-283
    [8] [8] Mertens K C, De Baets B, Verbeke L P C, De Wulf R R. Direct sub-pixel mapping exploiting spatial dependence. In: Proceedings of IEEE International Symposium on Geoscience and Remote Sensing. New York, USA: IEEE, 2004, 5: 3046-3049
    [9] [9] Mertens K C, de Baets B, Verbeke L P C, de Wulf R R. A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models. International Journal of Remote Sensing, 2006, 27(15): 3293-3310
    [10] Verhoeye J, De Wulf R. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sensing of Environment, 2002, 79(1): 96-104
    [11] Mertens K C, Verbeke L P C, Ducheyne E I, De Wulf R R. Using genetic algorithms in sub-pixel mapping. International Journal of Remote Sensing, 2003, 24(21): 4241-4247
    [12] Atkinson P M. Sub-pixel target mapping from soft-classified, remotely sensed imagery. Photogrammetric Engineering and Remote Sensing, 2005, 71(7): 839-846
    [13] Villa A, Chanussot J, Benediktsson J A, Jutten C. Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 521-533
    [14] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. Equation of state calculations by fast computing machines. Journal of Physics, 1958, 21: 1087-1092
    [15] Zhong Y F, Zhang L P. Remote sensing image subpixel mapping based on adaptive differential evolution. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(5): 1306-1329
    [16] Dong W S, Zhang D, Shi G M, Wu X L. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857
    [17] Pan Z X, Yu J, Huang H J, Hu S X, Zhang A W, Ma H B, Sun W D. Super-resolution based on compressive sensing and structural self-similarity for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4864-4876
    [18] Congalton R G, Green K. Assessing the Accuracy of Remote Sensed Data: Principles and Pratices. New York: Lewis Publishers, 1999
    [19] Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 1960, 20: 37-46
  • 加载中
计量
  • 文章访问数:  2118
  • HTML全文浏览量:  100
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-17
  • 修回日期:  2014-04-18
  • 刊出日期:  2014-08-20

目录

    /

    返回文章
    返回