2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合异构特征的子空间迁移学习算法

张景祥 王士同 邓赵红 蒋亦樟 李奕

张景祥, 王士同, 邓赵红, 蒋亦樟, 李奕. 融合异构特征的子空间迁移学习算法. 自动化学报, 2014, 40(2): 236-246. doi: 10.3724/SP.J.1004.2014.00236
引用本文: 张景祥, 王士同, 邓赵红, 蒋亦樟, 李奕. 融合异构特征的子空间迁移学习算法. 自动化学报, 2014, 40(2): 236-246. doi: 10.3724/SP.J.1004.2014.00236
ZHANG Jing-Xiang, WANG Shi-Tong, DENG Zhao-Hong, JIANG Yi-Zhang, LI Yi. A Subspace Transfer Learning Algorithm Integrating Heterogeneous Features. ACTA AUTOMATICA SINICA, 2014, 40(2): 236-246. doi: 10.3724/SP.J.1004.2014.00236
Citation: ZHANG Jing-Xiang, WANG Shi-Tong, DENG Zhao-Hong, JIANG Yi-Zhang, LI Yi. A Subspace Transfer Learning Algorithm Integrating Heterogeneous Features. ACTA AUTOMATICA SINICA, 2014, 40(2): 236-246. doi: 10.3724/SP.J.1004.2014.00236

融合异构特征的子空间迁移学习算法


DOI: 10.3724/SP.J.1004.2014.00236
详细信息
    作者简介:

    王士同 江南大学数字媒体学院教授.主要研究方向为人工智能,模式识别和生物信息.E-mail:wxwangst@yahoo.com.cn

  • 基金项目:

    国家自然科学基金(61170122,61202311,61272210);江苏省自然科学基金(BK2012552)资助

A Subspace Transfer Learning Algorithm Integrating Heterogeneous Features

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China (61170122, 61202311, 61272210), and Natural Science Foundation of Jiangsu Province (BK2012552)

  • 摘要: 特征迁移重在领域共有特征间学习,然而其忽略领域特有特征的判别信息,使算法的适应性受到一定的局限. 针对此问题,提出了一种融合异构特征的子空间迁移学习(The subspace transfer learning algorithm integrating with heterogeneous features,STL-IHF)算法.该算法将数据的特征空间看成共享和特有两个特征子空间的组合,同时基于经验风险最 小框架将共享特征和特有特征共同嵌入到支持向量机(Support vector machine,SVM)的训练过程中.其在共享特征子空间上实现知识迁移的 同时兼顾了领域特有的异构信息,增强了算法的适应性.模拟和真实数据集上的实验结果表明了所提方法的有效性.
  • [1] Pan J L, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359
    [2] Duan L X, Tsang I W, Xu D. Domains transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479
    [3] Tu W T, Sun S L. A subject transfer framework for EEG classification. Neurocomputing, 2012, 82: 109-116
    [4] Daume Ⅲ H, Marcu D. Domain adaptation for statistical classifiers. Journal of Artificial Intelligence Research, 2006, 26(1): 101-126
    [5] Biekel S, Bruckner M, Scheffer T. Discriminative learning for differing training and test distributions. In: Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007. 81-88
    [6] Bickel S, Sawade C, Scheffer T. Transfer learning by distribution matching for targeted advertising. In: Proceedings of the 21st Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2009. 145-152
    [7] Wu P C, Dietterich T G. Improving SVM accuracy by training on auxiliary data sources. In: Proceedings of the 21st International Conference on Machine Learning (ICML). New York, USA: ACM, 2004. 110-117
    [8] Dai W Y, Yang Q, Xue G R, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning (ICML). New York, USA: ACM, 2007. 193-200
    [9] Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM). New York, USA: ACM, 2009. 1327-1336
    [10] Xu Z J, Sun S L. Multi-view transfer learning with Adaboost. In: Proceedings of the 23rd Conference on Tools with Artificial Intelligence. Boca Raton, FL: IEEE, 2011. 399-402
    [11] Chen M M, Weinberger K Q, Blitzer J. Co-training for domain adaptation. In: Proceedings of the 25th Conference on Neural Information Processing Systems (NIPS). New York: USA: Curran Associates, Inc., 2011. 1231-1240
    [12] Xu Z J, Sun S L. Multi-source transfer learning with multi-view adaboost. Neural Information Processing, 2012, 7665: 332-339
    [13] Jiang Yi-Zhang, Deng Zhao-Hong, Wang Shi-Tong. Mamdani-Larsen type transfer learning fuzzy system. Acta Automatica Sinica, 2012, 38(9): 1393-1409 (蒋亦樟, 邓赵红, 王士同. ML型迁移学习模糊系统. 自动化学报, 2012, 38(9): 1393-1409)
    [14] Zhu Mei-Qiang, Cheng Yu-Hu, Li Ming, Wang Xue-Song, Feng Huan-Ting. A hybrid transfer algorithm for reinforcement learning based on spectral method. Acta Automatica Sinica, 2012, 38(11): 1765-1776 (朱美强, 程玉虎, 李明, 王雪松, 冯涣婷. 一类基于谱方法的强化学习混合迁移算法. 自动化学报, 2012, 38(11): 1765-1776)
    [15] Jiang W H, Chung F L. Transfer spectral clustering. In: Proceedings of the 2012 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). Berlin, Heidelberg: Springer-Verlag, 2012. 789-803
    [16] Argyriou A, Micchelli C A, Pontil M, Ying Y M. A spectral regularization frame work for multi-task structure learning. In: Proceedings of Advances in Neural Information Processing Systems (NIPS 2008). Cambridge, MA: MIT Press, 2007. 25-32
    [17] Pan S J L, Kwok J T, Yang Q. Transfer learning via dimensionality reduction. In: Proceedings of the 23rd International Conference on Artificial Intelligence. California, USA: AAAI Press, 2008. 677-682
    [18] Pan S J L, Ni X C, Sun J T, Yang Q, Chen Z. Cross-domain sentiment classification via spectral feature alignment. In: Proceedings of the 19th International Conference on World Wide Web (WWW'10). New York, USA: ACM, 2010. 751-760
    [19] Tu W T, Sun S L. Transferable discriminative dimensionality reduction. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (CTAI). Boca Raton, FL: IEEE, 2011. 865-868
    [20] Gao X B, Wang X M, Li X L, Tao D C. Transfer latent variable model based on divergence analysis. Pattern Recognition, 2011, 44(10-11): 2358-2366
    [21] Gao X B, Wang Z, Yan P K, Li X L. Transfer learning for pedestrian detection. Neurocomputing, 2013, 100: 51-57
    [22] Gretton A, Fukumizu K, Harchaoui Z, Sriperumbudur B K. A fast, consistent kernel two-sample test. In: Proceedings of Advances in Neural Information Processing Systems (NIPS 2010). Red Hook, NY: MIT Press, 2010. 673-681
    [23] Gao Jun, Wang Shi-Tong, Deng Zhao-Hong. Global and local preserving based semi-supervised support vector machine. Acta Electronica Sinica, 2010, 38(7): 1626-1633 (皋军, 王士同, 邓赵红. 基于全局和局部保持的半监督支持向量机. 电子学报, 2010, 38(7): 1626-1633)
    [24] Deng Nai-Yang, Tian Ying-Jie. New Method in Data Mining: Support Vector Machine. Beijing: Science Press, 2004. 5-16 (邓乃阳, 田英杰. 数据挖掘中的新方法: 支持向量机. 北京: 科学出版社, 2004. 5-16)
    [25] Yuan Ya-Xiang. Optimization Theory and Methods. Beijing: Science Press, 1997. 176-189 (袁亚湘. 最优化理论与方法. 北京: 科学出版社, 1997. 176-189)
    [26] Tao Jian-Wen, Wang Shi-Tong. Kernel support vector machine for domain adaptation. Acta Automatica Sinica, 2012, 38(5): 797-881 (陶剑文, 王士同. 领域适应核支持向量机. 自动化学报, 2012, 38(5): 797-881)
    [27] Cai D, He X F, Han J W, Zhang H J. Orthogonal Laplacianfaces for face recognition. IEEE Transactions on Image Processing, 2006, 15(11): 3608-3614
    [28] Zhang J Y, Zhang B, Jiang X Z. Analyses of feature extraction methods based on wavelet transform. Signal Processing, 2000, 16(2): 156-162
  • [1] 李策, 张栋, 杜少毅, 朱子重, 贾盛泽, 曲延云. 一种迁移学习和可变形卷积深度学习的蝴蝶检测算法[J]. 自动化学报, 2019, 45(9): 1772-1782. doi: 10.16383/j.aas.c190104
    [2] 张成坤, 韩敏. 基于边缘保持滤波的高光谱影像光谱-空间联合分类[J]. 自动化学报, 2018, 44(2): 280-288. doi: 10.16383/j.aas.2018.c160704
    [3] 许夙晖, 慕晓冬, 柴栋, 罗畅. 基于极限学习机参数迁移的域适应算法[J]. 自动化学报, 2018, 44(2): 311-317. doi: 10.16383/j.aas.2018.c160818
    [4] 南栋, 毕笃彦, 马时平, 凡遵林, 何林远. 基于分类学习的去雾后图像质量评价算法[J]. 自动化学报, 2016, 42(2): 270-278. doi: 10.16383/j.aas.2016.c140854
    [5] 舒醒, 于慧敏, 郑伟伟, 谢奕, 胡浩基, 唐慧明. 基于边际Fisher准则和迁移学习的小样本集分类器设计算法[J]. 自动化学报, 2016, 42(9): 1313-1321. doi: 10.16383/j.aas.2016.c150560
    [6] 齐美彬, 檀胜顺, 王运侠, 刘皓, 蒋建国. 基于多特征子空间与核学习的行人再识别[J]. 自动化学报, 2016, 42(2): 299-308. doi: 10.16383/j.aas.2016.c150344
    [7] 徐嘉明, 张卫强, 杨登舟, 刘加, 夏善红. 基于流形正则化极限学习机的语种识别系统[J]. 自动化学报, 2015, 41(9): 1680-1685. doi: 10.16383/j.aas.2015.c140916
    [8] 董爱美, 王士同. 共享隐空间迁移SVM[J]. 自动化学报, 2014, 40(10): 2276-2287. doi: 10.3724/SP.J.1004.2014.02276
    [9] 应文豪, 王士同, 邓赵红, 王骏. 基于类分布的领域自适应支持向量机[J]. 自动化学报, 2013, 39(8): 1273-1288. doi: 10.3724/SP.J.1004.2013.01273
    [10] 陶剑文, 王士同. 领域适应核支持向量机[J]. 自动化学报, 2012, 38(5): 797-811. doi: 10.3724/SP.J.1004.2012.00797
    [11] 蒋亦樟, 邓赵红, 王士同. ML 型迁移学习模糊系统[J]. 自动化学报, 2012, 38(9): 1393-1409. doi: 10.3724/SP.J.1004.2012.01393
    [12] 种衍文, 匡湖林, 李清泉. 一种基于多特征和机器学习的分级行人检测方法[J]. 自动化学报, 2012, 38(3): 375-381. doi: 10.3724/SP.J.1004.2012.00375
    [13] 刘建伟, 李双成, 罗雄麟. p范数正则化支持向量机分类算法[J]. 自动化学报, 2012, 38(1): 76-87. doi: 10.3724/SP.J.1004.2012.00076
    [14] 张地, 何家忠. 基于特征空间的人脸超分辨率重构[J]. 自动化学报, 2012, 38(7): 1145-1152. doi: 10.3724/SP.J.1004.2012.01145
    [15] 陈荣, 曹永锋, 孙洪. 基于主动学习和半监督学习的多类图像分类[J]. 自动化学报, 2011, 37(8): 954-962. doi: 10.3724/SP.J.1004.2011.00954
    [16] 丁晓剑, 赵银亮. 偏置b对支持向量机分类问题泛化性能的影响[J]. 自动化学报, 2011, 37(9): 1105-1113. doi: 10.3724/SP.J.1004.2011.01105
    [17] 张战成, 王士同, 钟富礼. 协作式整体和局部的分类机[J]. 自动化学报, 2011, 37(10): 1256-1263. doi: 10.3724/SP.J.1004.2011.01256
    [18] 刘峤, 秦志光, 陈伟, 张凤荔. 基于零范数特征选择的支持向量机模型[J]. 自动化学报, 2011, 37(2): 252-256. doi: 10.3724/SP.J.1004.2011.00252
    [19] 李钧涛, 贾英民. 用于微阵列分类的Huberized多类支持向量机[J]. 自动化学报, 2010, 36(3): 399-405. doi: 10.3724/SP.J.1004/2010.00399
    [20] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32-42.
  • 加载中
计量
  • 文章访问数:  1808
  • HTML全文浏览量:  101
  • PDF下载量:  1760
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-31
  • 修回日期:  2013-04-02
  • 刊出日期:  2014-02-20

融合异构特征的子空间迁移学习算法

doi: 10.3724/SP.J.1004.2014.00236
    基金项目:

    国家自然科学基金(61170122,61202311,61272210);江苏省自然科学基金(BK2012552)资助

    作者简介:

    王士同 江南大学数字媒体学院教授.主要研究方向为人工智能,模式识别和生物信息.E-mail:wxwangst@yahoo.com.cn

摘要: 特征迁移重在领域共有特征间学习,然而其忽略领域特有特征的判别信息,使算法的适应性受到一定的局限. 针对此问题,提出了一种融合异构特征的子空间迁移学习(The subspace transfer learning algorithm integrating with heterogeneous features,STL-IHF)算法.该算法将数据的特征空间看成共享和特有两个特征子空间的组合,同时基于经验风险最 小框架将共享特征和特有特征共同嵌入到支持向量机(Support vector machine,SVM)的训练过程中.其在共享特征子空间上实现知识迁移的 同时兼顾了领域特有的异构信息,增强了算法的适应性.模拟和真实数据集上的实验结果表明了所提方法的有效性.

English Abstract

张景祥, 王士同, 邓赵红, 蒋亦樟, 李奕. 融合异构特征的子空间迁移学习算法. 自动化学报, 2014, 40(2): 236-246. doi: 10.3724/SP.J.1004.2014.00236
引用本文: 张景祥, 王士同, 邓赵红, 蒋亦樟, 李奕. 融合异构特征的子空间迁移学习算法. 自动化学报, 2014, 40(2): 236-246. doi: 10.3724/SP.J.1004.2014.00236
ZHANG Jing-Xiang, WANG Shi-Tong, DENG Zhao-Hong, JIANG Yi-Zhang, LI Yi. A Subspace Transfer Learning Algorithm Integrating Heterogeneous Features. ACTA AUTOMATICA SINICA, 2014, 40(2): 236-246. doi: 10.3724/SP.J.1004.2014.00236
Citation: ZHANG Jing-Xiang, WANG Shi-Tong, DENG Zhao-Hong, JIANG Yi-Zhang, LI Yi. A Subspace Transfer Learning Algorithm Integrating Heterogeneous Features. ACTA AUTOMATICA SINICA, 2014, 40(2): 236-246. doi: 10.3724/SP.J.1004.2014.00236
参考文献 (28)

目录

    /

    返回文章
    返回