[1]
|
Holland J H. Adaptation in Natural and Artificial Systems. Michigan, USA: The University of Michigan Press, 1975
|
[2]
|
Kim H S, Cho S B. Application of interactive genetic algorithm to fashion design. Engineering Applications of Artificial Intelligence, 2000, 13(6): 635-644
|
[3]
|
Simons C L, Parmee I C. Elegant object-oriented software design via interactive, evolutionary computation. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 1797-1805
|
[4]
|
Solomon C J, Gibson S J, Mist J J. Interactive evolutionary generation of facial composites for locating suspects in criminal investigations. Applied Soft Computing, 2013, 13(7): 3298-3306
|
[5]
|
Takagi H. Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE, 2001, 89(9): 1275-1296
|
[6]
|
Liu Xiao-Lu, Chen Ying-Guo, He Ren-Jie, Chen Ying-Wu. Application of Kriging surrogate model to optimization of earth observation satellite system. Acta Automatica Sinica, 2012, 38(1): 120-127(刘晓路, 陈盈果, 贺仁杰, 陈英武. Kriging代理模型在对地观测卫星系统优化中的应用. 自动化学报, 2012, 38(1): 120-127)
|
[7]
|
Sun Xiao-Yan, Ren Jie, Gong Dun-Wei. Interval-fitness interactive genetic algorithms with varying population size based on semi-supervised learning. Control Theory and Applications, 2011, 28(5): 610-618(孙晓燕, 任洁, 巩敦卫. 基于半监督学习的变种群规模区间适应值交互式遗传算法. 控制理论与应用, 2011, 28(5): 610-618)
|
[8]
|
Li Hong-Wei, Liu Yang, Lu Han-Qing, Fang Yi-Kai. Gaussian processes classification combined with semi-supervised kernels. Acta Automatica Sinica, 2009, 35(7): 888-895(李宏伟, 刘扬, 卢汉清, 方亦凯. 结合半监督核的高斯过程分类. 自动化学报, 2009, 35(7): 888-895)
|
[9]
|
Gong D W, Guo G S. Interactive genetic algorithms with interval fitness of evolutionary individuals. Dynamics of Continuous. Discrete and Impulsive Systems, Series B, 2007, 14(S2): 446-450
|
[10]
|
Biles J A, Anderson P G, Loggi L W. Neural network fitness functions for a musical IGA. In: Proceedings of the 1996 International Symposium on Intelligent Industrial Automation and Soft Computing. Berlin, Germany: Springer, 1996. 39-44
|
[11]
|
Zhou Yong, Gong Dun-Wei, Hao Guo-Sheng, Guo Yi-Nan, Sun Xiao-Yan. Neural network based phase estimation of individual fitness in interactive genetic algorithm. Control and Decision, 2005, 20(2): 234-236, 240(周勇, 巩敦卫, 郝国生, 郭一楠, 孙晓燕. 交互式遗传算法基于NN的个体适应度分阶段估计. 控制与决策, 2005, 20(2): 234-236, 240)
|
[12]
|
Wang S F, Wang X F, Takagi H. User fatigue reduction by an absolute rating data-trained predictor in IEC. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation. Vancouver, B. C., Canada: IEEE, 2006. 2195-2200
|
[13]
|
Llorá X, Sastry K, Goldberg D E, Gupta A, Lakshmi L. Combating user fatigue in iGAs: Partial ordering, support vector machines, and synthetic fitness. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. Washington DC: IEEE, 2005. 1363-1370
|
[14]
|
Ecemis I, Bonabeau E, Ashburn T. Interactive estimation of agent-based financial markets models: modularity and learning. In: Proceedings of the 2005 Genetic and Evolutionary Computation Conference. New York: ACM, 2005. 1897-1904
|
[15]
|
Gong Dun-Wei, Ren Jie, Sun Xiao-Yan. Neural network surrogate models of interactive genetic algorithms with individual's interval fitness. Control and Decision, 2009, 24(10): 1522-1525, 1530(巩敦卫, 任洁, 孙晓燕. 区间适应值交互式遗传算法神经网络代理模型. 控制与决策, 2009, 24(10): 1522-1525, 1530)
|
[16]
|
Wang K, Bui V, Petraki E, Abbass H A. Evolving story narrative using surrogate models of human judgement. Advances in Intelligent Systems and Computing, 2013, 208(1): 653-661
|
[17]
|
Sun X Y, Gong D W, Ma X P. Directed fuzzy graph-based surrogate model-assisted interactive genetic algorithms with uncertain individual's fitness. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation. Trondheim: IEEE, 2009. 2395-2402
|
[18]
|
Boyle P, Frean M. Multiple Output Gaussian Process Regression. Technical Report CS-TR-05/2, School of Mathematical and Computing Sciences, Victoria University of Wellington, Wellington, New Zealand, 2005
|
[19]
|
Sun X Y, Gong D W, Jin Y C, Chen S S. A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning. IEEE Transactions on System, Man, and Cybernetics: Part B, 2013, 43(2): 685-698
|