2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据非随机缺失机制的推荐系统托攻击探测

李聪 骆志刚

李聪, 骆志刚. 基于数据非随机缺失机制的推荐系统托攻击探测. 自动化学报, 2013, 39(10): 1681-1690. doi: 10.3724/SP.J.1004.2013.01681
引用本文: 李聪, 骆志刚. 基于数据非随机缺失机制的推荐系统托攻击探测. 自动化学报, 2013, 39(10): 1681-1690. doi: 10.3724/SP.J.1004.2013.01681
LI Cong, LU Zhi-Gang. Detecting Shilling Attacks in Recommender Systems Based on Non-random-missing Mechanism. ACTA AUTOMATICA SINICA, 2013, 39(10): 1681-1690. doi: 10.3724/SP.J.1004.2013.01681
Citation: LI Cong, LU Zhi-Gang. Detecting Shilling Attacks in Recommender Systems Based on Non-random-missing Mechanism. ACTA AUTOMATICA SINICA, 2013, 39(10): 1681-1690. doi: 10.3724/SP.J.1004.2013.01681

基于数据非随机缺失机制的推荐系统托攻击探测


DOI: 10.3724/SP.J.1004.2013.01681
详细信息
    作者简介:

    骆志刚 国防科学技术大学计算机学院教授.主要研究方向为高性能计算,数据挖掘与生物信息学.E-mail:zgluo@nudt.edu.cn

Detecting Shilling Attacks in Recommender Systems Based on Non-random-missing Mechanism

More Information
  • 摘要: 协同过滤推荐系统极易受到托攻击的侵害. 开发托攻击探测技术已成为保障推荐系统可靠性与鲁棒性的关键. 本文以数据非随机缺失机制为依托,对导致评分缺失的潜在因素进行解析, 并在概率产生模型框架内将这些潜在因素与Dirichlet过程相融合, 提出了用于托攻击探测的缺失评分潜在因素分析(Latent factor analysis for missing ratings, LFAMR)模型. 实验表明,与现有探测技术相比, LFAMR具备更强的普适性和无监督性, 即使缺乏系统相关先验知识,仍可有效探测各种常见托攻击.
  • [1] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749
    [2] Su X Y, Khoshgoftaar T M. A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, 2009: 1-20
    [3] Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE Intelligent Systems, 2007, 22(3): 56-63
    [4] Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402
    [5] O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377
    [6] Huang Z, Chen H, Zeng D. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems, 2004, 22(1): 116-142
    [7] Mobasher B, Burke R D, Bhaumik R, Williams C. Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 2007, 7(4): 1-40
    [8] Burke R, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, Pennsylvania, USA: ACM, 2006. 542-547
    [9] Zhang S, Ouyang Y, Ford J, Makedon F. Analysis of a low-dimensional linear model under recommendation attacks. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, Washington, USA: ACM, 2006. 517-524
    [10] Mehta B, Nejdl W. Unsupervised strategies for shilling detection and robust collaborative filtering. User Modeling and User-Adapted Interaction, 2009, 19(1-2): 65-97
    [11] Mehta B, Hofmann T, Fankhauser P. Lies and propaganda: detecting spam users in collaborative filtering. In: Proceedings of the 12th International Conference on Intelligent User Interfaces. Honolulu, Hawaii: ACM, 2007. 14-21
    [12] Bryan K, O'Mahony M P, Cunningham P. Unsupervised retrieval of attack profiles in collaborative recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems. Lausanne, Switzerland: ACM, 2008. 155-162
    [13] Little R J A, Rubin D B. Statistical Analysis with Missing Data. New York: John Wiley, 1987. 13-17
    [14] Ferguson T S. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1973, 1(2): 209-230
    [15] MacKay D J C. Bayesian interpolation. Neural Computation, 1992, 4(3): 415-447
    [16] Frigyik B A, Kapila A, Gupta M R. Introduction to the Dirichlet Distribution and Related Processes, Technical Report, Department of Electrical Engineering, University of Washington, 2010
    [17] Sethuraman J. A constructive definition of Dirichlet priors. Statistica Sinica, 1994, 4: 639-650
    [18] Antoniak C E. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 1974, 2(6): 1152-1174
    [19] Attias H. Inferring parameters and structure of latent variable models by variational bayes. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann, 1999. 21-30
    [20] Jaakkola T S, Jordan M I. Bayesian parameter estimation via variational methods. Statistics and Computing, 2000, 10(1): 25-37
    [21] Ishwaran J, James L F. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 2001, 96(453): 161-173
    [22] Blei D M, Jordan M I. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 2006, 1(1): 121-144
    [23] Lewis D D, Gale W A. A sequential algorithm for training text classifiers. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Dublin, Ireland: Springer, 1994. 3-12
    [24] Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7(2): 179-188
    [25] Mehta B, Hofmann T. A survey of attack-resistant collaborative filtering algorithms. IEEE Data Engineering Bulletin, 2008, 31(2): 14-22
  • [1] 彭大天, 董建敏, 蔡忠闽, 张长青, 彭勤科. 假数据注入攻击下信息物理融合系统的稳定性研究[J]. 自动化学报, 2019, 45(1): 196-205. doi: 10.16383/j.aas.2018.c180331
    [2] 王琦, 邰伟, 汤奕, 倪明. 面向电力信息物理系统的虚假数据注入攻击研究综述[J]. 自动化学报, 2019, 45(1): 72-83. doi: 10.16383/j.aas.2018.c180369
    [3] 潘涛涛, 文峰, 刘勤让. 基于矩阵填充和物品可预测性的协同过滤算法[J]. 自动化学报, 2017, 43(9): 1597-1606. doi: 10.16383/j.aas.2017.c160644
    [4] 刘强, 秦泗钊. 过程工业大数据建模研究展望[J]. 自动化学报, 2016, 42(2): 161-171. doi: 10.16383/j.aas.2016.c150510
    [5] 俞斌峰, 季海波. 稀疏贝叶斯混合专家模型及其在光谱数据标定中的应用[J]. 自动化学报, 2016, 42(4): 566-579. doi: 10.16383/j.aas.2016.c150255
    [6] 张燕平, 张顺, 钱付兰, 张以文. 基于用户声誉的鲁棒协同推荐算法[J]. 自动化学报, 2015, 41(5): 1004-1012. doi: 10.16383/j.aas.2015.c140073
    [7] 李文涛, 高旻, 李华, 熊庆宇, 文俊浩, 凌斌. 一种基于流行度分类特征的托攻击检测算法[J]. 自动化学报, 2015, 41(9): 1563-1576. doi: 10.16383/j.aas.2015.c150040
    [8] 代伟, 柴天佑. 数据驱动的复杂磨矿过程运行优化控制方法[J]. 自动化学报, 2014, 40(9): 2005-2014. doi: 10.3724/SP.J.1004.2014.02005
    [9] 杜党波, 张伟, 胡昌华, 周志杰, 司小胜, 张建勋. 含缺失数据的小波-卡尔曼滤波故障预测方法[J]. 自动化学报, 2014, 40(10): 2115-2125. doi: 10.3724/SP.J.1004.2014.02115
    [10] 杨震, 赖英旭, 段立娟, 李玉鑑, 许昕. 邮件网络协同过滤机制研究[J]. 自动化学报, 2012, 38(3): 399-411. doi: 10.3724/SP.J.1004.2012.00399
    [11] 李聪, 骆志刚, 石金龙. 一种探测推荐系统托攻击的无监督算法[J]. 自动化学报, 2011, 37(2): 160-167. doi: 10.3724/SP.J.1004.2011.00160
    [12] 周建英, 王飞跃, 曾大军. 分层Dirichlet过程及其应用综述[J]. 自动化学报, 2011, 37(4): 389-407. doi: 10.3724/SP.J.1004.2011.00389
    [13] 李聪, 骆志刚. 用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型[J]. 自动化学报, 2011, 37(9): 1067-1076. doi: 10.3724/SP.J.1004.2011.01067
    [14] 邓成, 李洁, 高新波. 基于仿射协变区域的抗几何攻击图像水印算法[J]. 自动化学报, 2010, 36(2): 221-228. doi: 10.3724/SP.J.1004.2010.00221
    [15] 刘民. 基于数据的生产过程调度方法研究综述[J]. 自动化学报, 2009, 35(6): 785-806. doi: 10.3724/SP.J.1004.2009.00785
    [16] 吴启迪, 乔非, 李莉, 吴莹. 基于数据的复杂制造过程调度[J]. 自动化学报, 2009, 35(6): 807-813. doi: 10.3724/SP.J.1004.2009.00807
    [17] 卿湘运, 王行愚. 概率二维主分量分析[J]. 自动化学报, 2008, 34(3): 353-359. doi: 10.3724/SP.J.1004.2008.00353
    [18] 陈翰馥, 安万福. 多項式迭加平稳过程信号的預报过滤问題[J]. 自动化学报, 1966, 4(1): 60-66.
  • 加载中
计量
  • 文章访问数:  913
  • HTML全文浏览量:  34
  • PDF下载量:  1588
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-28
  • 修回日期:  2012-06-29
  • 刊出日期:  2013-10-20

基于数据非随机缺失机制的推荐系统托攻击探测

doi: 10.3724/SP.J.1004.2013.01681
    作者简介:

    骆志刚 国防科学技术大学计算机学院教授.主要研究方向为高性能计算,数据挖掘与生物信息学.E-mail:zgluo@nudt.edu.cn

摘要: 协同过滤推荐系统极易受到托攻击的侵害. 开发托攻击探测技术已成为保障推荐系统可靠性与鲁棒性的关键. 本文以数据非随机缺失机制为依托,对导致评分缺失的潜在因素进行解析, 并在概率产生模型框架内将这些潜在因素与Dirichlet过程相融合, 提出了用于托攻击探测的缺失评分潜在因素分析(Latent factor analysis for missing ratings, LFAMR)模型. 实验表明,与现有探测技术相比, LFAMR具备更强的普适性和无监督性, 即使缺乏系统相关先验知识,仍可有效探测各种常见托攻击.

English Abstract

李聪, 骆志刚. 基于数据非随机缺失机制的推荐系统托攻击探测. 自动化学报, 2013, 39(10): 1681-1690. doi: 10.3724/SP.J.1004.2013.01681
引用本文: 李聪, 骆志刚. 基于数据非随机缺失机制的推荐系统托攻击探测. 自动化学报, 2013, 39(10): 1681-1690. doi: 10.3724/SP.J.1004.2013.01681
LI Cong, LU Zhi-Gang. Detecting Shilling Attacks in Recommender Systems Based on Non-random-missing Mechanism. ACTA AUTOMATICA SINICA, 2013, 39(10): 1681-1690. doi: 10.3724/SP.J.1004.2013.01681
Citation: LI Cong, LU Zhi-Gang. Detecting Shilling Attacks in Recommender Systems Based on Non-random-missing Mechanism. ACTA AUTOMATICA SINICA, 2013, 39(10): 1681-1690. doi: 10.3724/SP.J.1004.2013.01681
参考文献 (25)

目录

    /

    返回文章
    返回