2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的马氏距离相对变换主元分析方法及其故障检测应用

石怀涛 刘建昌 薛鹏 张珂 吴玉厚 张丽秀 谭帅

石怀涛, 刘建昌, 薛鹏, 张珂, 吴玉厚, 张丽秀, 谭帅. 一种改进的马氏距离相对变换主元分析方法及其故障检测应用. 自动化学报, 2013, 39(9): 1533-1542. doi: 10.3724/SP.J.1004.2013.01533
引用本文: 石怀涛, 刘建昌, 薛鹏, 张珂, 吴玉厚, 张丽秀, 谭帅. 一种改进的马氏距离相对变换主元分析方法及其故障检测应用. 自动化学报, 2013, 39(9): 1533-1542. doi: 10.3724/SP.J.1004.2013.01533
SHI Huai-Tao, LIU Jian-Chang, XUE Peng, ZHANG Ke, WU Yu-Hou, ZHANG Li-Xiu, TAN Shuai. Improved Relative-transformation Principal Component Analysis Based on Mahalanobis Distance and Its Application for Fault Detection. ACTA AUTOMATICA SINICA, 2013, 39(9): 1533-1542. doi: 10.3724/SP.J.1004.2013.01533
Citation: SHI Huai-Tao, LIU Jian-Chang, XUE Peng, ZHANG Ke, WU Yu-Hou, ZHANG Li-Xiu, TAN Shuai. Improved Relative-transformation Principal Component Analysis Based on Mahalanobis Distance and Its Application for Fault Detection. ACTA AUTOMATICA SINICA, 2013, 39(9): 1533-1542. doi: 10.3724/SP.J.1004.2013.01533

一种改进的马氏距离相对变换主元分析方法及其故障检测应用

doi: 10.3724/SP.J.1004.2013.01533

Improved Relative-transformation Principal Component Analysis Based on Mahalanobis Distance and Its Application for Fault Detection

Funds: 

Supported by National Natural Science Foundation of China (51375317, 61374137), National 12th Five-Year Science and Technology Based Plan (2011BAJ02B07), the Ministry of Education Innovation Team Support Projects (IRT1160), and Science and Technology Plan, Shenyang City (F12-036-2-00)

More Information
    Corresponding author: WU Yu-Hou
  • 摘要: 目前, 主元分析方法(PCA)在数据处理、模式识别、过程监测等领域得到了越来越广泛的应用, 但仍存在部分关键问题亟待解决. 本文为了提高PCA方法的故障检测性能, 进行了一系列的改进, 首先, 本文引入相对变换的概念, 使用马氏距离相对变换直接消除量纲, 通过理论推导证明了马氏距离相对变换可以对数据不进行标准化直接进行数据变换, 而且给出了在相对空间内数据进行PCA变换的合理解释, 表明了基于马氏距离相对变换的PCA故障检测方法可以有效的消除变量量纲对数据的影响, 提高数据的可分性. 其次, 改进了SPE监控指标, 提出一种基于马氏距离的平方预测误差指标, 更有效地实现对工业过程的故障检测. 最后, 将两种改进方法相结合, 提出改进的马氏距离相对变换PCA故障检测方法, 并以轧钢过程活套系统为背景, 实际数据仿真结果表明: 与PCA以及其它改进方法相比, 本文提出的方法具有更好的故障检测性能和实时性, 能准确、有效地检测出活套故障.
  • [1] Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis. Journal of Process Control, 2012, 22(3): 551-563
    [2] Shi Huai-Tao, Liu Jian-Chang, Ding Xiao-Di, Tan Shuai, Wang Xue-Mei. Fault detection based on hybrid dynamic principal component analysis. Control Engineering of China, 2012, 19(1): 148-151 (in Chinese)
    [3] Wen Cheng-Lin, Hu Yu-Cheng. Fault diagnosis based on information incremental matrix. Acta Automatica Sinica, 2012, 38(5): 832-840 (in Chinese)
    [4] Wu Feng, Zhong Yan, Wu Quan-Yuan. Online classification framework for data stream based on incremental kernel principal component analysis. Acta Automatica Sinica, 2010, 36(4): 534-542 (in Chinese)
    [5] Dobos L, Abonyi J. On-line detection of homogeneous operation ranges by dynamic principal component analysis based time-series segmentation. Chemical Engineering Science, 2012, 75: 96-105
    [6] Zhang Y W, Zhou H, Qin S J. Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis. Acta Automatica Sinica, 2010, 36(4): 593-597
    [7] Luan Fang-Jun, Guo Hong-Mei, Lin Lan, Wang Yong-Hui. Algorithm of face authentication based on wavelet transform and combining two different 2-dimensional participial component analyses. Journal of Shenyang Jianzhu University (Natural Science), 2010, 26(5): 1001-1005 (in Chinese)
    [8] Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. Berlin: Springer, 2001
    [9] Wen Cheng-Lin, Hu Jing, Wang Tian-Zhen, Chen Zhi-Guo. Relative PCA with applications of data compression and fault diagnosis. Acta Automatica Sinica, 2008, 34(9): 1128-1139 (in Chinese)
    [10] Dunia R, Qin S J, Edgar T F, McAvoy T J. Identification of faulty sensors using principal component analysis. American Institute of Chemical Engineers Journal, 1996, 42(10): 2797-2812
    [11] Zhao Zhong-Gai, Liu Fei. Application research of statistical monitoring index based on Mahalanobis distance. Acta Automatica Sinica, 2008, 34(4): 493-495 (in Chinese)
    [12] Wen G H, Jiang L J, Wen J. Local relative transformation with application to isometric embedding. Pattern Recognition Letters, 2009, 30(3): 203-211
    [13] Li Yuan, Tang Xiao-Chu. Improved performance of fault detection based on selection of the optimal number of principal components. Acta Automatica Sinica, 2009, 35(2): 1550-1557 (in Chinese)
    [14] Tamura M, Tsujita S. A study on the number of principal components and sensitivity of fault detection using PCA. Computers and Chemical Engineering, 2007, 31(9): 1035-1046
    [15] Banerjee A, Burlina P. Efficient particle filtering via sparse kernel density estimation. IEEE Transactions on Image Processing, 2010, 19(9): 2480-2490
    [16] Shi H T, Liu J C, Zhang Y, Li L. Fault detection method based on relative-transformation partial least squares. Chinese Journal of Scientific Instrument, 2012, 33(4): 816-822
    [17] Marcu T, Köppen-Seliger B, Stücher R. Design of fault detection for a hydraulic looper using dynamic neural networks. Control Engineering Practice, 2008, 16(2): 192-213
    [18] Yue Yu-Mei, Ma Ya-Li, Wang Jiao-Qing. Research about fault intelligent diagnosis of high speed rotating machinery. Journal of Shenyang Jianzhu University (Natural Science), 2005, 21(6): 770-773 (in Chinese)
  • 加载中
计量
  • 文章访问数:  1162
  • HTML全文浏览量:  53
  • PDF下载量:  1328
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-06
  • 修回日期:  2013-03-19
  • 刊出日期:  2013-09-20

目录

    /

    返回文章
    返回