2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性反馈的镇定和输出调节: 简要综述

姜钟平 黄捷

姜钟平, 黄捷. 基于非线性反馈的镇定和输出调节: 简要综述. 自动化学报, 2013, 39(9): 1389-1401. doi: 10.3724/SP.J.1004.2013.01389
引用本文: 姜钟平, 黄捷. 基于非线性反馈的镇定和输出调节: 简要综述. 自动化学报, 2013, 39(9): 1389-1401. doi: 10.3724/SP.J.1004.2013.01389
JIANG Zhong-Ping, HUANG Jie. Stabilization and Output Regulation by Nonlinear Feedback: a Brief Overview. ACTA AUTOMATICA SINICA, 2013, 39(9): 1389-1401. doi: 10.3724/SP.J.1004.2013.01389
Citation: JIANG Zhong-Ping, HUANG Jie. Stabilization and Output Regulation by Nonlinear Feedback: a Brief Overview. ACTA AUTOMATICA SINICA, 2013, 39(9): 1389-1401. doi: 10.3724/SP.J.1004.2013.01389

基于非线性反馈的镇定和输出调节: 简要综述

doi: 10.3724/SP.J.1004.2013.01389
基金项目: 

香港特别行政区研究资助局(412810); 中国国家自然科学基金(61004 010, 61074026); 美国国家科学基金(ECCS-1230040)资助

详细信息
    作者简介:

    姜钟平 教授. 1988年获武汉大学数学 系学士学位, 1989年获巴黎南大统计学硕士学位, 1993年获法国高等矿业大学自动控制与数学博士学位, 其后在法国、澳大利亚和美国多所高校和研究所从事研究工作. 现任美国纽约大学理工学院教授. 主要研究方向为稳定性理论, 鲁棒自适应非线性控制及其在通讯网络、欠驱动力学系统、多智能体和系统生理学中的应用.E-mail: zhongping_jiang@yahoo.com

Stabilization and Output Regulation by Nonlinear Feedback: a Brief Overview

Funds: 

Supported by the Research Grants Council of the Hong Kong Special Administration Region (412810), National Natural Science Foundation of China (61004010, 61074026), and National Science Foundation of USA (ECCS-1230040)

  • 摘要: 简要回顾了非线性系统的镇定和输出调节的最新进展, 概述了这两类表面上独立的课题之间的内在联系. 同时也讨论了部分未解决的问题和未来的研究工作.
  • [1] Kokotović P V, Arcak M. Constructive nonlinear control: a historical perspective. Automatica, 2001, 37(5): 637-662
    [2] Sontag E D. Input to state stability: basic concepts and results. Nistri P, Stefani G [Editor]. Nonlinear and Optimal Control Theory. Berlin: Springer-Verlag, 2007. 163-220
    [3] Artstein Z. Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods and Applications, 1983, 7(11): 1163-1173
    [4] Sontag E D. Mathematical Control Theory: Deterministic Finite Dimensional Systems (Second edition). New York: Springer-Verlag, 1998
    [5] Jiang Z P, Praly L. Preliminary results about robust Lagrange stability in adaptive non-linear regulation. International Journal of Adaptive Control and Signal Processing, 1992, 6(4): 285-307
    [6] Krstić M, Kanellakopoulos I, Kokotović P V. Nonlinear and Adaptive Control Design. New York: Wiley, 1995
    [7] Praly L, Bastin G, Pomet J B, Jiang Z P. Adaptive stabilization of nonlinear systems. Kokotović P V [Editor]. Foundations of Adaptive Control. Berlin, Heidelberg: Springer-Verlag, 1991. 347-434
    [8] Freeman R, Kokotović P V. Robust Nonlinear Control Design. Boston: Birkhäuser, 1996.
    [9] Primbs J A, Nevistic V, Doyle J C. Nonlinear optimal control: a control Lyapunov function and receding horizon perspective. Asian Journal of Control, 1999, 1(1): 14-24
    [10] Jankovic M. Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1048-1060
    [11] Karafyllis I, Jiang Z P. Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM: Control, Optimisation and Calculus of Variations, 2010, 16: 887-928
    [12] Ogren P, Egerstedt M, Hu X M. A control Lyapunov function approach to multiagent coordination. IEEE Transactions on Robotics and Automation, 2002, 18(5): 847-851
    [13] Tsinias J. Sufficient Lyapunov-like conditions for stabilization. Mathematics of Control, Signals and Systems, 1989, 2(4): 343-357
    [14] Kokotović P V. The joy of feedback: nonlinear and adaptive. IEEE Control Systems Magazine, 1992, 12(3): 7-17
    [15] Coron J M, Praly L. Adding an integrator for the stabilization problem. Systems and Control Letters, 1991, 17(2): 89-104
    [16] Iggidr A, Sallet G. Nonlinear stabilization by adding integrators. Kybernetika, 1994, 30(5): 499-506
    [17] Outbib R, Jghima H. Comments on the stabilization of nonlinear systems by adding an integrator. IEEE Transactions on Automatic Control, 1996, 41(12): 1804-1807
    [18] Ceragioli F, De Persis C. Discontinuous stabilization of nonlinear systems: quantized and switching controls. Systems & Control Letters, 2007, 56(7-8): 461-473
    [19] Jiang Z P, Praly L. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica, 1998, 34(7): 825-840
    [20] Marino R, Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust. London: Prentice-Hall, 1995
    [21] Hong Y G, Jiang Z P, Feng G. Finite-time input-to-state stability and applications to finite-time control design. SIAM Journal on Control and Optimization, 2010, 48(7): 4395-4418
    [22] Tanner H G, Kyriakopoulos K J. Backstepping for nonsmooth systems. Automatica, 2003, 39(7): 1259-1265
    [23] Zhou J, Wen C Y. Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-variations. London: Springer, 2008
    [24] Jiang Z P, Mareels I M Y. A small-gain control method for nonlinear cascaded systems with dynamic uncertainties. IEEE Transactions on Automatic Control, 1997, 42(3): 292-308
    [25] Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals, and Systems, 1994, 7(2): 95-120
    [26] Sontag E D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 1989, 34(4): 435-443
    [27] Karafyllis I, Jiang Z P. Stability and Stabilization of Nonlinear Systems. London: Springer, 2011
    [28] Ito H, Jiang Z P, Dashkovskiy S N, Rüffer B S. Robust stability of networks of iISS systems: construction of sum-type Lyapunov functions. IEEE Transactions on Automatic Control, 2013, 58(5): 1192-1207
    [29] Jiang Z P, Mareels I M Y, Wang Y. A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica, 1996, 32(8): 1211-1215
    [30] Liu T F, Hill D J, Jiang Z P. Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks. Automatica, 2011, 47(9): 2088-2093
    [31] Liu T F, Jiang Z P, Hill D J. Lyapunov formulation of the ISS cyclic-small-gain theorem for hybrid dynamical networks. Nonlinear Analysis: Hybrid Systems, 2012, 6(4): 988-1001
    [32] Jiang Z P, Mareels I, Hill D J, Huang J. A unifying framework for global regulation via nonlinear output feedback: from ISS to iISS. IEEE Transactions on Automatic Control, 2004, 49(4): 549-562
    [33] Liu T F, Jiang Z P, Hill D J. A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica, 2012, 48(1): 145-152
    [34] Liu T F, Jiang Z P, Hill D J. Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Transactions on Automatic Control, 2012, 57(5): 1326-1332
    [35] Liu T F, Jiang Z P, Hill D J. Quantized stabilization of strict-feedback nonlinear systems based on ISS cyclic-small-gain theorem. Mathematics of Control, Signals, and Systems, 2012, 24(1-2): 75-110
    [36] Liu T F, Jiang Z P. Distributed formation control of nonholonomic mobile robots without global position measurements. Automatica, 2013, 49(2): 592-600
    [37] Liu T F, Jiang Z P. Distributed output-feedback control of nonlinear multi-agent systems. IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2013.2257616
    [38] Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 2000, 45(7): 1279-1289
    [39] Delchamps D F. Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control, 1990, 35(8): 916-924
    [40] Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 2001, 46(9): 1384-1400
    [41] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, 2005, 50(11): 1698-1711
    [42] Miller R K, Mousa M S, Michel A N. Quantization and overflow effects in digital implementations of linear dynamic controllers. IEEE Transactions on Automatic Control, 1988, 33(7): 698-704
    [43] De Persis C. Robust stabilization of nonlinear systems by quantized and ternary control. Systems & Control Letters, 2009, 58(8): 602-608
    [44] Liberzon D, Hespanha J P. Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 2005, 50(6): 910-915
    [45] Liberzon D, Nešić D. Input-to-state stabilization of linear systems with quantized state measurements. IEEE Transactions on Automatic Control, 2007, 52(5): 767-781
    [46] Liberzon D. Observer-based quantized output feedback control of nonlinear systems. In: Proceedings of the 17th IFAC World Congress. Seoul, Korea: IFAC, 2008. 8039-8043
    [47] Praly L, Jiang Z P. Stabilization by output feedback for systems with ISS inverse dynamics. Systems and Control Letters, 1993, 21(1): 19-33
    [48] Huang Jie. An overview on the output regulation problem. Journal of Systems Science and Mathematical Sciences, 2011, 31(9): 1055-1081 (黄捷. 输出调节问题综述. 系统科学与数学, 2011, 31(9): 1055-1081)
    [49] Huang J. Cooperative output regulation of multi-agent systems. In: Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012. 1-5
    [50] Huang J. Output regulation of nonlinear systems with nonhyperbolic zero dynamics. IEEE Transactions on Automatic Control, 1995, 40(8): 1497-1500
    [51] Huang J, Rugh W J. Stabilization on zero-error manifolds and the nonlinear servomechanism problem. IEEE Transactions on Automatic Control, 1992, 37(7): 1009-1013
    [52] Isidori A, Byrnes C I. Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 1990, 35(2): 131-140
    [53] Pavlov A, van de Wouw N, Nijmeijer H. Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach. Boston: Birkhäuser, 2005
    [54] Tarn T J, Sanposh P, Cheng D, Zhang M. Output regulation for nonlinear systems: some recent theoretical and experimental results. IEEE Transactions on Control Systems Technology, 2005, 13(4): 605-610
    [55] Byrnes C I, Delli P F, Isidori A, Kang W. Structurally stable output regulation of nonlinear systems. Automatica, 1997, 33(3): 369-385
    [56] Huang J. Asymptotic tracking and disturbance rejection in uncertain nonlinear systems. IEEE Transactions on Automatic Control, 1995, 40(6): 1118-1122
    [57] Huang J, Rugh W J. On a nonlinear multivariable servomechanism problem. Automatica, 1990, 26(6): 963-972
    [58] Huang J, Chen Z Y. A general framework for tackling the output regulation problem. IEEE Transactions on Automatic Control, 2004, 49(12): 2203-2218
    [59] Khalil H K. Robust servomechanism output feedback controllers for feedback linearizable systems. Automatica, 1994, 30(10): 1587-1599
    [60] Khalil H K. On the design of robust servomechanisms for minimum phase nonlinear systems. International Journal of Robust and Nonlinear Control, 2000, 10(5): 339-361
    [61] Serrani A, Isidori A. Global robust output regulation for a class of nonlinear systems. System & Control Letters, 2000, 39(2): 133-139
    [62] Byrnes C I, Isidori A. Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation. IEEE Transactions on Automatic Control, 2003, 48(10): 1712-1723
    [63] Isidori A, Marconi L, Serrani A. Robust Autonomous Guidance: An Internal Model Approach. Berlin: Springer, 2003
    [64] Marconi L, Praly L, Isidori A. Robust asymptotic stabilization of nonlinear systems with non-hyperbolic zero dynamics. IEEE Transactions on Automatic Control, 2010, 55(4): 907-921
    [65] Davison E J. The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Transactions on Automatic Control, 1976, 21(1): 25-34
    [66] Francis B A. The linear multivariable regulator problem. SIAM Journal on Control and Optimization, 1977, 15(3): 486-505
    [67] Francis B A, Wonham W M. The internal model principle of control theory. Automatica, 1976, 12(5): 457-465
    [68] Huang J, Lin C F. Internal model principle and robust control of nonlinear systems. In: Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio, Texas, USA, 1993. 1501-1506
    [69] Huang J, Lin C F. On a robust nonlinear servomechanism problem. IEEE Transactions on Automatic Control, 1994, 39(7): 1510-1513
    [70] Huang J. Nonlinear output regulation: theory and applications. Advance in Design and Control. Philadelphia, Pa, USA: SIAM, 2004
    [71] Huang J. K-fold exosystem and the robust nonlinear servomechanism problem. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(1): 149-153
    [72] Chen Z Y, Huang J. Robust output regulation with nonlinear exosystems. Automatica, 2005, 41(8): 1447-1454
    [73] Nikiforov V O. Adaptive non-linear tracking with complete compensation of unknown disturbances. European Journal of Control, 1998, 4(2): 132-139
    [74] Chen Z Y, Huang J. Global robust output regulation for output feedback systems. IEEE Transactions on Automatic Control, 2005, 50(1): 117-121
    [75] Huang J, Hu G Q. Control design for the nonlinear benchmark problem via the output regulation method. Journal of Control Theory and Applications, 2004, 2(1): 11-19
    [76] Chen T S, Huang J. Global robust output regulation by state feedback for strict feedforward systems. IEEE Transactions on Automatic Control, 2009, 54(9): 2157-2163
    [77] Huang J. Remarks on the robust output regulation problem for nonlinear systems. IEEE Transactions on Automatic Control, 2001, 46(12): 2028-2031
    [78] Yang X, Huang J. New results on robust output regulation of nonlinear systems with a nonlinear exosystem. International Journal of Robust and Nonlinear Control, 2012, 22(15): 1703-1719
    [79] Byrnes C I, Isidori A. Nonlinear internal models for output regulation. IEEE Transactions on Automatic Control, 2004, 49(12): 2244-2247
    [80] Marconi L, Praly L, Isidori A. Output stabilization via nonlinear Luenberger observers. SIAM Journal on Control and Optimization, 2007, 45(6): 2277-2298
    [81] Marconi L, Praly L. Uniform practical nonlinear output regulation. IEEE Transactions on Automatic Control, 2008, 53(5): 1184-1202
    [82] Sontag E D, Teel A. Changing supply functions in input/state stable systems. IEEE Transactions on Automatic Control, 1995, 40(8): 1476-1478
    [83] Seshagiri S, Khalil H K. Robust output regulation of minimum phase nonlinear systems using conditional servocompensators. International Journal of Robust and Nonlinear Control, 2005, 15(2): 83-102
    [84] Chen Z Y, Huang J. Global tracking of uncertain nonlinear cascaded systems with adaptive internal model. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, Nevada USA: IEEE, 2002. 3855-3862
    [85] Ding Z T. Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 2003, 39(3): 471-479
    [86] Ding Z. Adaptive estimation and rejection of unknown sinusoidal disturbances in a class of non-minimum-phase nonlinear systems. IEE Proceedings---Control Theory and Applications, 2006, 153(4): 379-386
    [87] Marino R, Santosuosso G L, Tomei P. Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica, 2003, 39(10): 1755-1761
    [88] Serrani A, Isidori A, Marconi L. Semi-global nonlinear output regulation with adaptive internal model. IEEE Transactions on Automatic Control, 2001, 46(8): 1178-1194
    [89] Xu D B, Huang J. Robust adaptive control of a class of nonlinear systems and its applications. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2010, 57(3): 691-702
    [90] Ye X D, Huang J. Decentralized adaptive output regulation for a class of large-scale nonlinear systems. IEEE Transactions on Automatic Control, 2003, 48(2): 276-281
    [91] Liu L, Chen Z Y, Huang J. Parameter convergence and minimal internal model with an adaptive output regulation problem. Automatica, 2009, 45(5): 1306-1311
    [92] Chen Z Y, Huang J. Dissipativity, stabilization, and regulation of cascade-connected systems. IEEE Transactions on Automatic Control, 2004, 49(5): 635-650
    [93] Ding Z T. Universal disturbance rejection for nonlinear systems in output feedback form. IEEE Transactions on Automatic Control, 2003, 48(7): 1222-1226
    [94] Nussbaum R D. Some remarks on a conjecture in parameter adaptive control. Systems and Control Letters, 1983, 3(5): 243-246
    [95] Liu L, Huang J. Global robust output regulation of output feedback systems with unknown high-frequency gain sign. IEEE Transactions on Automatic Control, 2006, 51(4): 625-631
    [96] Liu L, Huang J. Global robust output regulation of lower triangular systems with unknown control direction. Automatica, 2008, 44(5): 1278-1284
    [97] Xu D B, Huang J. Output regulation for output feedback systems with iISS inverse dynamics. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(4): 044503-1-044503-4
    [98] Huang J. Remarks on ''synchronized output regulation of linear networked systems''. IEEE Transactions on Automatic Control, 2011, 56(3): 630-631
    [99] Su Y F, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Transactions on Automatic Control, 2012, 57(4): 1062-1066
    [100] Xiang J, Wei W, Li Y J. Synchronized output regulation of linear networked systems. IEEE Transactions on Automatic Control, 2009, 54(6): 1336-1341
    [101] Hong Y G, Wang X L, Jiang Z P. Distributed output regulation of leader-follower multi-agent systems. International Journal of Robust and Nonlinear Control, 2013, 23(1): 48-66
    [102] Su Y F, Huang J. Cooperative output regulation with application to multi-agent consensus under switching network. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(3): 864-875
    [103] Wang X L, Hong Y G, Huang J, Jiang Z P. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Transactions on Automatic Control, 2010, 55}(12): 2891-2895
    [104] Su Y F, Huang J. Cooperative robust output regulation of a class of heterogeneous linear uncertain multi-agent systems. International Journal of Robust and Nonlinear Control, DOI: 10.1002/rnc.3027
    [105] Su Y, Hong Y, Huang J. A general result on the robust cooperative output regulation for linear uncertain multi-agent systems. IEEE Transactions on Automatic Control, 2013, 58(5): 1275-1279
    [106] Wang X L, Han F L. Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika, 2011, 47(5): 755-772
    [107] Su Y F, Huang J. Global robust output regulation for nonlinear multi-agent systems in strict feedback form. In: Proceedings of the 12th International Conference on Control, Automation, Robotics and Vision. Guangzhou, China: IEEE, 2012. 436-441
    [108] Dong Y, Huang J. Cooperative global robust output regulation for nonlinear multi-agent systems in output feedback form. In: Proceedings of the 12th International Conference on Control, Automation, Robotics and Vision. Guangzhou, China: IEEE, 2012. 10-12
    [109] Su Y, Huang J. Cooperative semi-global robust output regulation of nonlinear uncertain multi-agent systems. In: Proceedings of the 2013 American Control Conference. Washington, DC, USA: ACC, 2013. 2041-2046
  • 加载中
计量
  • 文章访问数:  2519
  • HTML全文浏览量:  85
  • PDF下载量:  3018
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-02
  • 修回日期:  2013-08-13
  • 刊出日期:  2013-09-20

目录

    /

    返回文章
    返回