2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于解剖学特征的乳腺X线图像胸肌分割

李艳凤 陈后金 杨娜 张胜君

李艳凤, 陈后金, 杨娜, 张胜君. 基于解剖学特征的乳腺X线图像胸肌分割. 自动化学报, 2013, 39(8): 1265-1272. doi: 10.3724/SP.J.1004.2013.01265
引用本文: 李艳凤, 陈后金, 杨娜, 张胜君. 基于解剖学特征的乳腺X线图像胸肌分割. 自动化学报, 2013, 39(8): 1265-1272. doi: 10.3724/SP.J.1004.2013.01265
LI Yan-Feng, CHEN Hou-Jin, YANG Na, ZHANG Sheng-Jun. Pectoral Muscle Segmentation in Mammograms Based on Anatomic Features. ACTA AUTOMATICA SINICA, 2013, 39(8): 1265-1272. doi: 10.3724/SP.J.1004.2013.01265
Citation: LI Yan-Feng, CHEN Hou-Jin, YANG Na, ZHANG Sheng-Jun. Pectoral Muscle Segmentation in Mammograms Based on Anatomic Features. ACTA AUTOMATICA SINICA, 2013, 39(8): 1265-1272. doi: 10.3724/SP.J.1004.2013.01265

基于解剖学特征的乳腺X线图像胸肌分割

doi: 10.3724/SP.J.1004.2013.01265
基金项目: 

国家自然科学基金(61271305, 61201363);中央高校基本科研业务费专项资金(2013YJS017);高等学校博士学科点专项科研基金 (20110009110001)资助

详细信息
    作者简介:

    李艳凤 北京交通大学电子信息工程学院博士研究生. 2006 年获得北京交通大学通信工程学士学位. 主要研究方向为生物医学图像处理及其应用.E-mail: 11111049@bjtu.edu.cn

Pectoral Muscle Segmentation in Mammograms Based on Anatomic Features

Funds: 

Supported by National Natural Science Foundation of China (61271305, 61201363), Fundamental Research Funds for the Central Universities of China (2013YJS017), and Research Fund for the Doctoral Program of Higher Education of China (20110009110001)

  • 摘要: 提出了基于解剖学特征(纹理特征和形状特征)的乳腺X线图像胸肌区域分割方法. 融合边缘信息到谱聚类算法得到过分割图像. 根据区域的亮度分布和胸肌的三角形状特征,提出区域聚合算法, 从过分割图像中识别出胸肌边缘.该方法在322幅mini-MIAS (Mammographic image analysis society)乳腺图像和50幅北京大学人民医院乳腺中心乳腺图像上进行验证, 实验结果表明,该方法对不同大小、形状和亮度的胸肌分割具有较强的鲁棒性.
  • [1] Kwok S M, Chandrasekhar R, Attikiouzel Y, Rickard M T. Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Transactions on Medical Imaging, 2004, 23(9): 1129-1140
    [2] Camilus K S, Govindan V K, Sathidevi P S. Computer-aided identification of the pectoral muscle in digitized mammograms. Journal of Digital Imaging, 2010, 23(5): 562-580
    [3] Ferrari R J, Rangayyan R M, Desautels J E L, Frere A F. Segmentation of mammograms: identification of the skin-air boundary, pectoral muscle, and fibro-glandular disc. In: Proceedings of the 5th International Workshop Digital Mammography. Toronto, Canada: American Roentgen Ray Society, 2001. 573-579
    [4] Ferrari R J, Rangayyan R M, Desautels J E L, Borges R A, Frere A F. Automatic identification of the pectoral muscle in mammograms. IEEE Transactions on Medical Imaging, 2004, 23(2): 232-245
    [5] Ma F, Bajger M, Slavotinek J P, Bottema M J. Two graph theory based methods for identifying the pectoral muscle in mammograms. Pattern Recognition, 2007, 40(9): 2592-2602
    [6] Wang L, Zhu M L, Deng L P, Yuan X. Automatic pectoral muscle boundary detection in mammograms based on Markov chain and active contour model. Journal of Zhejiang University: Science C, 2010, 11(2): 111-118
    [7] Camilus K S, Govindan V K, Sathidevi P S. Pectoral muscle identification in mammograms. Journal of Applied Clinical Medical Physics, 2011, 12(3): 215-230
    [8] Shi J B, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
    [9] Liu Song-Tao, Yin Fu-Liang. The basic principle and its new advances of image segmentation methods based on graph cuts. Acta Automatica Sinica, 2012, 38(6): 911-922(刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展. 自动化学报, 2012, 38(6): 911-922)
    [10] Fowlkes C, Belongie S, Chung F, Malik J. Spectral grouping using the Nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225
    [11] Tung F, Wong A, Clausi D A. Enabling scalable spectral clustering for image segmentation. Pattern Recognition, 2010, 43(12): 4069-4076
    [12] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577
    [13] Arbeláez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916
    [14] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863
  • 加载中
计量
  • 文章访问数:  2146
  • HTML全文浏览量:  139
  • PDF下载量:  1474
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-27
  • 修回日期:  2012-10-09
  • 刊出日期:  2013-08-20

目录

    /

    返回文章
    返回