[1]
|
Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515 (柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515)
|
[2]
|
[2] Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730-743
|
[3]
|
Zhou Ping, Chai Tian-You. Intelligent monitoring and control of mill load for grinding processes. Control Theory Applications, 2008, 25(6): 1095-1099 (周平, 柴天佑. 磨矿过程磨机负荷的智能监测与控制. 控制理论与应用, 2008, 25(6): 1095-1099)
|
[4]
|
[4] Tham M T, Montague G A, Morris A J, Lant P A. Soft-sensors for process estimation and inferential control. Journal of Process Control, 1991, 1(1): 3-14
|
[5]
|
[5] Kadlec P, Gabrys B, Strand S. Data-driven soft sensors in the process industry. Computers and Chemical Engineering, 2009, 33(4): 795-814
|
[6]
|
[6] Liu J L. On-line soft sensor for polyethylene process with multiple production grades. Control Engineering Practice, 2007, 15(7): 769-778
|
[7]
|
[7] Tang J, Chai T Y, Zhao L J, Yu W, Yue H. Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm. Neurocomputing, 2012, 78(1): 38-47
|
[8]
|
[8] Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space. Journal of Machine Learning Research, 2002, 2(1): 97-123
|
[9]
|
[9] Kadlec P, Grbic R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Computers Chemical Engineering, 2011, 35(1): 1-24
|
[10]
|
Gallagher N B, Wise B M, Butler S W, White D D Jr, Barna G G. Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process: improving robustness through model updating. In: Proceedings of the 1997 Advanced Control of Chemical Processes. Banff, Canada: IEEE, 1997. 78-83
|
[11]
|
Wold S. Exponentially weighted moving principal components analysis and projections to latent structures. Chemometrics and Intelligent Laboratory Systems, 1994, 23(1): 149-161
|
[12]
|
Li W H, Yue H H, Valle-Cervantes S, Qin S J. Recursive PCA for adaptive process monitoring. Journal of Process Control, 2000, 10(5): 471-486
|
[13]
|
Elshenawy L M, Yin S, Naik A S, Ding S X. Efficient recursive principal component analysis algorithms for process monitoring. Industrial and Engineering Chemistry Research, 2010, 49(1): 252-259
|
[14]
|
Qin S J. Recursive PLS algorithms for adaptive data modeling. Computers Chemical Engineering, 1998, 22(4-5): 503-514
|
[15]
|
Wang X, Kruger U, Irwin G W. Process monitoring approach using fast moving window PCA. Industrial and Engineering Chemistry Research, 2005, 44(5): 5691-5702
|
[16]
|
Pan T, Shan Y, Wu Z T, Chen Z H, Li P Z. MWPLS method applied to the waveband selection of NIR spectroscopy analysis for brix degree of sugarcane clarified juice. In: Proceedings of the 3rd International Conference on Measuring Technology and Mechatronics Automation. Shanghai, China: IEEE, 2011. 671-674
|
[17]
|
Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning. In: Proceedings of the 2001 in Advances in Neural Information Processing Systems. Granada, Spain: IEEE, 2001. 409-415
|
[18]
|
Laskov P, Gehl C, Krger S, Mller K R. Incremental support vector learning: analysis, implementation and applications. Journal Machine Learning Research, 2006, 7(1): 1909-1936
|
[19]
|
Karasuyama M, Takeuchi I. Multiple incremental decremental learning of support vector machines. IEEE Transactions on Neural Networks, 2010, 21(7): 1048-1059
|
[20]
|
Yu W. Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms. Information Sciences, 2004, 158: 131-147
|
[21]
|
Cong Q M, Chai T Y. Cascade process modeling with mechanism-based hierarchical neural networks. International Journal of Neural Systems, 2010, 20(1): 1-11
|
[22]
|
Wang W, Chai T Y, Yu W, Wang H, Su C Y. Modeling component concentrations of sodium aluminate solution via Hammerstein recurrent neural networks. IEEE Transactions on Control System Technology, 2012, 20(4): 971-982
|
[23]
|
Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes. Control Engineering Practice, 2003, 11(6): 613-632
|
[24]
|
Jin H D, Lee Y H, Lee G, Han C H. Robust recursive principal component analysis modeling for adaptive monitoring. Industrial and Engineering Chemistry Research, 2006, 45(2): 696-703
|
[25]
|
Choi S W, Martin E B, Morris A J, Lee I B. Adaptive multivariate statistical process control for monitoring time-varying processes. Industrial and Engineering Chemistry Research, 2006, 45(9): 3108-3118
|
[26]
|
He X B, Yang Y P. Variable MWPCA for adaptive process monitoring. Industrial and Engineering Chemistry Research, 2008, 47(2): 419-427
|
[27]
|
Engel Y, Mannor S, Meir R. The kernel recursive least-squares algorithm. IEEE Transactions on Signal Processing, 2004, 52(8): 2275-2285
|
[28]
|
Yu W. Fuzzy modelling via on-line support vector machines. International Journal of Systems Science, 2010, 41(11): 1325-1335
|
[29]
|
Tang J, Yu W, Zhao L J, Yue H, Chai T Y. Modeling of operating parameters for wet ball mill by modified GA-KPLS. In: Proceedings of the 3rd International Workshop on Advanced Computational Intelligence. Suzhou, China: IEEE, 2010. 282-287
|
[30]
|
Qin Z M, Liu J Z, Zhang L Y, Gu J J. Online learning algorithm for sparse kernel partial least squares. In: Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications. Taichung, Taiwan, China: IEEE, 2010. 1790-1794
|
[31]
|
Tang J, Yu W, Chai T Y, Zhao L J. On-line principal component analysis with application to process modeling. Neurocomputing, 2012, 82(1): 167-178
|
[32]
|
Tang J, Zhao L J, Yu W, Chai T Y, Yue H. Modified recursive partial least squares algorithm with application to modeling parameters of ball mill load. In: Proceedings of the 30th Chinese Control Conference. Yantai, China: IEEE, 2011. 5277-5282
|
[33]
|
Tang J, Chai T Y, Yu W, Zhao L J. Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process. Control Engineering Practice, 2012, 20(10): 991-1004
|
[34]
|
Dietterieg T. Machine-learning research: four current directions. The Artificial Intelligence Magazine, 1998, 18(1): 97-136
|
[35]
|
Hansen L K, Salamon P. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001
|
[36]
|
Ho T K. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-844
|
[37]
|
Rodriguez J J, Kuncheva L I, Alonso C J. Rotation forest: a new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1619-1630
|
[38]
|
Yu E Z, Cho S Z. Ensemble based on GA wrapper feature selection. Computers Industrial Engineering, 2006, 51(1): 111-116
|
[39]
|
Viney N R, Bormann H, Breuer L, Bronstert A, Croke B F W, Frede H, Grff T, Hubrechts L, Huisman J A, Jakeman A J, Kite G E, Lanini J, Leavesley G, Lettenmaier D P, Lindstrm G, Seibert J, Sivapalan M, Willems P. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: ensemble combinations and predictions. Advances in Water Resources, 2009, 32(2): 147-158
|
[40]
|
Perrone M P, Cooper L N. When Networks Disagree: Ensemble Methods for Hybrid Neural Networks, Technical Report A121062, Institute for Brain and Neural Systems, Brown University, 1993
|
[41]
|
Zhou Z H, Wu J X, Tang W. Ensembling neural networks: many could be better than all. Artificial Intelligence, 2002, 137(1-2): 239-263
|
[42]
|
Zhang Chun-Xia, Zhang Jiang-She. A survey of selective ensemble learning algorithms. Chinese Journal of Computers, 2011, 34(8): 1399-1410 (张春霞, 张讲社. 选择性集成学习算法综述. 计算机学报, 2011, {\bf 34}(8): 1399-1410)
|
[43]
|
Tang Jian, Chai Tian-You, Zhao Li-Jie, Yue Heng, Zheng Xiu-Ping. Ensemble modeling for parameters of ballmill load in grinding process based on frequency spectrum of shell vibration. Control Theory Applications, 2012, 29(2): 183-191 (汤健, 柴天佑, 赵立杰, 岳恒, 郑秀萍. 基于振动频谱的磨矿过程球磨机负荷参数集成建模方法. 控制理论与应用, 2012, 29(2): 183-191)
|
[44]
|
Tang J, Chai T Y, Yu W, Zhao L J. Ball mill load estimation of the grinding process based on selective multi-source information fusion. IEEE Transactions on Automation Science and Engineering, to be published
|
[45]
|
Yue H, Qin S J. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research, 2001, 40(20): 4403-4414
|
[46]
|
Yeh I C. Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research, 1998, 28(12): 1797-1808
|
[47]
|
Tang J, Zhao L J, Zhou J W, Yue H, Chai T Y. Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell. Minerals Engineering, 2010, 23(9): 720-730
|