2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

规则与数据驱动的层流冷却过程带钢卷取温度模型

片锦香 柴天佑 李界家

片锦香, 柴天佑, 李界家. 规则与数据驱动的层流冷却过程带钢卷取温度模型. 自动化学报, 2012, 38(11): 1861-1869. doi: 10.3724/SP.J.1004.2012.01861
引用本文: 片锦香, 柴天佑, 李界家. 规则与数据驱动的层流冷却过程带钢卷取温度模型. 自动化学报, 2012, 38(11): 1861-1869. doi: 10.3724/SP.J.1004.2012.01861
PIAN Jin-Xiang, CHAI Tian-You, LI Jie-Jia. Rule and Data Driven Strip Coiling Temperature Model in Laminar Cooling Process. ACTA AUTOMATICA SINICA, 2012, 38(11): 1861-1869. doi: 10.3724/SP.J.1004.2012.01861
Citation: PIAN Jin-Xiang, CHAI Tian-You, LI Jie-Jia. Rule and Data Driven Strip Coiling Temperature Model in Laminar Cooling Process. ACTA AUTOMATICA SINICA, 2012, 38(11): 1861-1869. doi: 10.3724/SP.J.1004.2012.01861

规则与数据驱动的层流冷却过程带钢卷取温度模型

doi: 10.3724/SP.J.1004.2012.01861
详细信息
    通讯作者:

    片锦香

Rule and Data Driven Strip Coiling Temperature Model in Laminar Cooling Process

  • 摘要: 针对现有层流冷却过程带钢温度模型缺乏换热系数、带钢定位、带钢卷取温度计算的有效方法这一问题,提出了由冷却单元阀门开闭状态模型、带钢冷却单元定位模型、不同换热方式下的带钢温度模型组成的带钢卷取温度动态模型,将案例推理、规则推理、 神经网络等相结合,提出了规则与数据驱动的模型参数智能辨识方法.采用某钢厂实际生产运行数据对所提出的带钢卷取温度动态模型进行了实验研究,实验结果表明本文提出的方法能够有效提高带钢卷取温度模型的精度.
  • [1] Peng L G, Liu E Y, Zhang D H, Liu X H, Xu F. Development and application of advanced coiling temperature control system in hot strip mill. Advanced Materials Research, 2012, 421: 140-146[2] Zheng Y, Li S Y. Plant-wide temperature drop monitoring in run-out table strip cooling process. In: Proceedings of the 2011 International Symposium on Advanced Control of Industrial Processes. Hangzhou, China: IEEE, 2011. 287-292[3] Chai Tian-You, Wang Xiao-Bo. Application of RBF neural networks in control system of the slab accelerating cooling process. Acta Automatica Sinica, 2000, 26(2): 219-225(柴天佑, 王笑波. RBF神经网络在加速冷却控制系统中的应用. 自动化学报, 2000, 26(2): 219-225)[4] Peng L, Li Q, Zhou Z. Cooling hot rolling steel strip using combined tactics. Journal of University of Science and Technology Beijing, 2008, 15(3): 362-365[5] Dong Z K, Wang X, Wang X B, Li S Y, Zheng Y H. Application of weighted multiple models adaptive controller in the plate cooling process. Acta Automatica Sinica, 2010, 36(8): 1144-1150(董志坤, 王昕, 王笑波, 李少远, 郑益慧. 多模型加权自适应控制在中厚板层流冷却系统中的应用. 自动化学报, 2010, 36(8): 1144-1150)[6] Zheng Y, Li S Y, Wang X B. An approach to model building for accelerated cooling process using instance-based learning. Expert Systems with Applications, 2010, 37(7): 5364-5371[7] Guo R M. Modeling and simulation of run-out table cooling control using feedforward-feedback and element tracking system. IEEE Transactions on Industry Applications, 1997, 33(2): 304-311[8] Serajzadeh S. Modelling of temperature history and phase transformations during cooling of steel. Journal of Materials Processing Technology, 2004, 146(3): 311-317[9] Chai T Y, Tan M H, Chen X Y, Li H X. Intelligent optimization control for laminar cooling. In: Proceedings of the 15th IFAC World Congress. Barcelona, Spain: Elsevier Science Ltd., 2002. 181-186[10] Pian J X, Chai T Y, Wang H, Su C Y. Hybrid intelligent forecasting method of the laminar cooling process for hot strip. In: Proceedings of the 2007 American Control Conference. New York, USA: IEEE, 2007. 4866-4871[11] Xing G S, Ding J L, Chai T Y, Afshar P, Wang H. Hybrid intelligent parameter estimation based on grey case-based reasoning for laminar cooling process. Engineering Applications of Artificial Intelligence, 2012, 25(2): 418-429[12] Wang Yong-Fu, Wang Dian-Hui, Chai Tian-You. Data mining and systems theory based fuzzy modeling and control compensation for friction. Acta Automatica Sinica, 2010, 36(3): 412-420(王永富, 王殿辉, 柴天佑. 基于数据挖掘与系统理论建立摩擦模糊模型与控制补偿. 自动化学报, 2010, 36(3): 412-420)[13] Ding F, Liu P X, Liu G J. Multiinnovation least-squares identification for system modeling. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(3): 767-778[14] Carvalho E P, Martínez J, Martínez J M, Pisnitchenko F. On optimization strategies for parameter estimation in models governed by partial differential equations. Mathematics and Computers in Simulation, to be published[15] Pal S K, De P K, Basak J. Unsupervised feature evaluation: a neuro-fuzzy approach. IEEE Transactions on Neural Networks, 2000, 11(2): 366-376
  • 加载中
计量
  • 文章访问数:  1829
  • HTML全文浏览量:  100
  • PDF下载量:  747
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-26
  • 修回日期:  2012-06-08
  • 刊出日期:  2012-11-20

目录

    /

    返回文章
    返回