2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免疫协同微粒群进化算法的永磁同步电机多参数辨识模型方法

刘朝华 章兢 李小花 张英杰

刘朝华, 章兢, 李小花, 张英杰. 免疫协同微粒群进化算法的永磁同步电机多参数辨识模型方法. 自动化学报, 2012, 38(10): 1698-1708. doi: 10.3724/SP.J.1004.2012.01698
引用本文: 刘朝华, 章兢, 李小花, 张英杰. 免疫协同微粒群进化算法的永磁同步电机多参数辨识模型方法. 自动化学报, 2012, 38(10): 1698-1708. doi: 10.3724/SP.J.1004.2012.01698
LIU Zhao-Hua, ZHANG Jing, LI Xiao-Hua, ZHANG Ying-Jie. Immune Co-evolution Particle Swarm Optimization for Permanent Magnet Synchronous Motor Parameter Identification. ACTA AUTOMATICA SINICA, 2012, 38(10): 1698-1708. doi: 10.3724/SP.J.1004.2012.01698
Citation: LIU Zhao-Hua, ZHANG Jing, LI Xiao-Hua, ZHANG Ying-Jie. Immune Co-evolution Particle Swarm Optimization for Permanent Magnet Synchronous Motor Parameter Identification. ACTA AUTOMATICA SINICA, 2012, 38(10): 1698-1708. doi: 10.3724/SP.J.1004.2012.01698

免疫协同微粒群进化算法的永磁同步电机多参数辨识模型方法

doi: 10.3724/SP.J.1004.2012.01698
详细信息
    通讯作者:

    刘朝华

Immune Co-evolution Particle Swarm Optimization for Permanent Magnet Synchronous Motor Parameter Identification

  • 摘要: 针对永磁同步电机多参数辨识问题,提出一种基于免疫协同微粒群进化(Immune co-evolution particle swarm optimization, ICPSO) 算 法的永磁同步电机(Permanent magnet synchronous motor, PMSM) 多参数辨识方法.算法由记忆种群与若干个普通种群构成, 在进化过程中普通种群中优秀个体进入记忆库种群.普通种群内部通过精英粒子 保留、免疫网络以及柯西变异等混合策略共同产生新个体,个体极值采用小波学习 加快收敛速度,免疫克隆选择算法对记忆库进行精细搜索,迁移机制实现了整个种群 的信息共享与协同进化.永磁同步电机参数辨识结果表明该方法不需要知道电 机设计参数先验知识,能够有效地辨识电机电阻、 dq轴电感与转子磁链,且能有效追踪该参数变化值.
  • [1] Ooshima M, Chiba A, Rahman A, Fukao T. An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation. IEEE Transactions on Energy Conversion, 2004, 19(3): 569-575[2] Rahman M A, Vilathgamuwa D M, Uddinand M N, King-Jet T. Nonlinear control of interior permanent magnet synchronous motor. IEEE Transactions on Industry Applications, 2003, 39(2): 408-416[3] Ramakrishnan R, Islam R, Islam M, Sebastian T. Real time estimation of parameters for controlling and monitoring permanent magnet synchronous motors. In: Proceedings of the 2009 IEEE International Electric Machines and Drives Conference. Miami, USA: IEEE, 2009. 1194-1199[4] Bolognani S, Tubiana L, Zigliotto M. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Transactions on Industry Applications, 2003, 39(6): 1741-1747[5] Liu T, Elbuluk M, Husain I. Sensorless adaptive neural network control of permanent magnet synchronous motors. In: Proceedings of International Conference on Electric Machines and Drives. Seattle, WA, USA: IEEE, 1999. 287-289[6] Liu K, Zhang Q, Chen J T, Zhu Z Q, Zhang J. Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1776-1788[7] Rashed M, Macconnell P F A, Stronach A F, Acarnley P. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1664-1675[8] Liu K, Zhang Q, Zhu Z Q, Zhang J, Shen A W, Stewart P. Comparison of two novel MRAS based strategies for identifying parameters in permanent magnet synchronous motors. International Journal of Automation and Computing, 2010, 7(4): 516-524[9] Rahman K M, Hiti S. Identification of machine parameters of a synchronous motor. IEEE Transactions on Industry Applications, 2005, 41(2): 557-565[10] Wu Mao-Lin, Huang Sheng-Hua. Nonlinear parameters identification of PMSM. Transactions of China Electrotechnical Society, 2009, 24(8): 65-68(吴茂林, 黄声华. 永磁同步电机非线性参数辨识, 电工技术学报, 2009, 24(8): 65-68)[11] Liu L, Liu W X Cartes D A. Permanent magnet synchronous motor parameter identification using particle swarm optimization. International Journal of Computational Intelligence Research, 2008, 4(2): 211-218[12] Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization. In: Proceedings of the 3rd Conference on Parallel Problem Solving from Nature. Berlin, Germany: Springer-Verlag, 1994. 249-257[13] Dasgupta D. Advances in artificial immune systems. IEEE Computational Intelligence Magazine, 2006, 1(4): 40-49[14] Lee J Y, Lee S H, Lee G H, Hong J P, Hur J. Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor. IEEE Transactions on Magnetic, 2006, 42(4): 1303-1306[15] Li Jing-Can, Liao Yong. Model of permanent magnet synchronous motor considering saturation and rotor flux harmonics. Proceedings of the CSEE, 2011, 31(3): 60-66(李景灿, 廖勇. 考虑饱和及转子磁场谐波的永磁同步电机模型. 中国电机工程学报, 2011, 31(3): 60-66)[16] Eberhart R, Kennedy J A. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995. 39-43[17] Whitbrook A M, Uwe A, Garibaldi J M. Idiotypic immune networks in mobile-robot control. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(6): 1581-1598[18] Ling S H, Iu H H C, Chan K Y, Lam H K, Yeung B C W, Leung F H. Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008 38(3): 743-763[19] Esmin A A A, Lambert-Torres G, de Souza A C Z. A hybrid particle swarm optimization applied to loss power minimization. IEEE Transactions on Power Systems, 2005, 20(2): 859-866[20] Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, Cybernetics, Part B: Cybernetics, 2004, 34(2): 997-1006[21] Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295[22] Wu H, Geng J P, Jin R H, Qiu J Z, Liu W, Chen J, Liu S N. An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3018-3028[23] Zhan Z H, Zhang J, Li Y, Chung H S H. Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1362-1380
  • 加载中
计量
  • 文章访问数:  1961
  • HTML全文浏览量:  100
  • PDF下载量:  1403
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-24
  • 修回日期:  2011-10-13
  • 刊出日期:  2012-10-20

目录

    /

    返回文章
    返回