2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀疏保持典型相关分析及在特征融合中的应用

侯书东 孙权森

侯书东, 孙权森. 稀疏保持典型相关分析及在特征融合中的应用. 自动化学报, 2012, 38(4): 659-665. doi: 10.3724/SP.J.1004.2012.00659
引用本文: 侯书东, 孙权森. 稀疏保持典型相关分析及在特征融合中的应用. 自动化学报, 2012, 38(4): 659-665. doi: 10.3724/SP.J.1004.2012.00659
HOU Shu-Dong, SUN Quan-Sen. Sparsity Preserving Canonical Correlation Analysis with Application in Feature Fusion. ACTA AUTOMATICA SINICA, 2012, 38(4): 659-665. doi: 10.3724/SP.J.1004.2012.00659
Citation: HOU Shu-Dong, SUN Quan-Sen. Sparsity Preserving Canonical Correlation Analysis with Application in Feature Fusion. ACTA AUTOMATICA SINICA, 2012, 38(4): 659-665. doi: 10.3724/SP.J.1004.2012.00659

稀疏保持典型相关分析及在特征融合中的应用

doi: 10.3724/SP.J.1004.2012.00659
详细信息
    通讯作者:

    孙权森 南京理工大学教授. 主要研究方向为模式识别, 图像处理与遥感信息处理. E-mail: qssun@126.com

Sparsity Preserving Canonical Correlation Analysis with Application in Feature Fusion

  • 摘要: 稀疏保持投影(Sparsity preserving projections, SPP)由于保持了数据间的稀疏重构性, 因而获取的投影向量满足旋转、尺度和平移的不变性, 并能够在无标签的情况下提取样本的自然鉴别信息, 在人脸识别领域取得了较为成功的应用. 本文在典型相关分析(Canonical correlation analysis, CCA)的基础上引入稀疏保持项, 提出一种稀疏保持典型相关分析(Sparsity preserving canonical correlation analysis, SPCCA). 该方法不仅实现了两组特征集鉴别信息的有效融合, 同时对提取特征间的稀疏重构性加以约束, 增强了特征的表示和鉴别能力. 在多特征手写体字符集与人脸数据集上的实验结果表明, SPCCA比CCA具有更优的识别性能.
  • [1] Jolliffe I T. Principle Component Analysis. New York: Springer, 1986[2] Barshan E, Ghodsi A, Azimifar Z, Jahromi M Z. Supervised principal component analysis: visualization, classification and regression on subspaces and submanifolds. Pattern Recognition, 2011, 44(7): 1357-1371[3] Kyperountas M, Tefas A, Pitas I. Weighted piecewise LDA for solving the small sample size problem in face verification. IEEE Transactions on Neural Networks, 2007, 18(2): 506-519[4] Lin Yu-E, Gu Guo-Chang, Liu Hai-Bo, Shen Jing, Zhao Jing. An orthogonal feature extraction method based on the within-class preserving for small sample size problem. Acta Automatica Sinica, 2010, 36(5): 644-649(林玉娥, 顾国昌, 刘海波, 沈晶, 赵靖. 适用于小样本问题的具有类内保持的正交特征提取算法. 自动化学报, 2010, 36(5): 644-649)[5] Cheng Zheng-Dong, Zhang Yu-Jin, Fan Xiang, Zhu Bin. Study on discriminant matrices of commonly-used Fisher discriminant functions. Acta Automatica Sinica, 2010, 36(10): 1361-1370(程正东, 章毓晋, 樊祥, 朱斌. 常用Fisher判别函数的判别矩阵研究. 自动化学报, 2010, 36(10): 1361-1370)[6] Wang Z, Chen S C, Sun T K. MultiK-MHKS: a novel multiple kernel learning algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 348-353[7] Hotelling H. Relations between two sets of variates. Biometrika, 1936, 28(3-4): 321-377[8] Sun Quan-Sen, Zeng Sheng-Gen, Heng Pheng-Ann, Xia De-Shen. The theory of canonical correlation analysis and its application to feature fusion. Chinese Journal of Computers, 2005, 28(9): 1524-1533(孙权森, 曾生根, 王平安, 夏德深. 典型相关分析的理论及其在特征融合中的应用. 计算机学报, 2005, 28(9): 1524-1533)[9] Melzer T, Reiter M, Bischof H. Appearance models based on kernel canonical correlation analysis. Pattern Recognition, 2003, 36(9): 1961-1971[10] Sun T K, Chen S C. Locality preserving CCA with applications to data visualization and pose estimation. Image and Vision Computing, 2007, 25(5): 531-543[11] Hong Quan, Chen Song-Can, Ni Xue-Lei. Sub-pattern canonical correlation analysis with application in face recognition. Acta Automatica Sinica, 2008, 34(1): 21-30(洪泉, 陈松灿, 倪雪蕾. 子模式典型相关分析及其在人脸识别中的应用. 自动化学报, 2008, 34(1): 21-30)[12] Sun T K, Chen S C, Yang J Y, Shi P F. A novel method of combined feature extraction for recognition. In: Proceedings of the 8th IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008. 1043-1048[13] Sun Q S, Liu Z D, Heng P A, Xia D S. A theorem on the generalized canonical projective vectors. Pattern Recognition, 2005, 38(3): 449-452[14] Peng Yan, Zhang Dao-Qiang. Semi-supervised canonical correlation analysis algorithm. Journal of Software, 2008, 19(11): 2822-2832(彭岩, 张道强. 半监督典型相关分析算法. 软件学报, 2008, 19(11): 2822-2832 )[15] Zhang J C, Zhang D Q. A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples. Pattern Recognition, 2011, 44(6): 1162-1171[16] Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227[17] Qiao L S, Chen S C, Tan X Y. Sparsity preserving projections with applications to face recognition. Pattern Recognition, 2010, 43(1): 331-341[18] Fan M Y, Gu N N, Qiao H, Zhang B. Sparse regularization for semi-supervised classification. Pattern Recognition, 2011, 44(8): 1777-1784[19] Sun L, Ji S W, Ye J. Canonical correlation analysis for multilabel classification: a least squares formulation, extensions and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 194-200[20] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 1996, 58(1): 267-288[21] Wei Quan-Ling, Wang Ri-Shuang, Xu Bing, Wang Jia-Yun, Bai Wen-Lin. Mathematical Programming and Optimization Design. Beijing: National Defense Industry Press, 1984(魏权龄, 王日爽, 徐冰, 汪家芸, 白文林. 数学规划和优化设计. 北京: 国防工业出版社, 1984)[22] Sun Quan-Sen. Research on Feature Extraction and Image Recognition Based on Correlation Projection Analysis [Ph.D. dissertation], Nanjing University of Science and Technology, China, 2006(孙权森. 基于相关投影分析的特征抽取与图像识别研究 [博士学位论文], 南京理工大学, 中国, 2006)[23] Kuncheva L I, Whitaker C J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 2003, 51(2): 181-207[24] Hu Zhong-Shan, Lou Zhen, Yang Jing-Yu, Liu Ke, Sun Jing-Yi. Handwritten digit recognition basis on multi-classifier combination. Chinese Journal of Computers, 1999, 22(4): 369-374(胡钟山, 娄震, 杨靖宇, 刘克, 孙靖夷. 基于多分类器组合的手写体数字识别. 计算机学报, 1999, 22(4): 369-374)[25] Samaria F S, Harter A C. Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, USA: IEEE, 1994. 138-142[26] Belhumeur P N, Hepanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720[27] Martinez A M, Benavente R. The AR Face Database, CVC Technical Report #24, Purdue University, USA, 1998[28] He X F, Niyogi P. Locality preserving projections. In: Proceedings of the Advances in Neural Information Processing System. Vancouver, Canada: MIT Press, 2003. 153-160[29] He X F, Cai D, Yan S C, Zhang H. Neighborhood preserving embedding. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1208-1213
  • 加载中
计量
  • 文章访问数:  2334
  • HTML全文浏览量:  71
  • PDF下载量:  1357
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-29
  • 修回日期:  2011-07-01
  • 刊出日期:  2012-04-20

目录

    /

    返回文章
    返回