2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

属性权重不确定条件下的区间直觉模糊多属性决策

张英俊 马培军 苏小红 张池平

张英俊, 马培军, 苏小红, 张池平. 属性权重不确定条件下的区间直觉模糊多属性决策. 自动化学报, 2012, 38(2): 220-228. doi: 10.3724/SP.J.1004.2012.00220
引用本文: 张英俊, 马培军, 苏小红, 张池平. 属性权重不确定条件下的区间直觉模糊多属性决策. 自动化学报, 2012, 38(2): 220-228. doi: 10.3724/SP.J.1004.2012.00220
ZHANG Ying-Jun, MA Pei-Jun, SU Xiao-Hong, ZHANG Chi-Ping. Multi-attribute Decision Making with Uncertain Attribute Weight Information in the Framework of Interval-valued Intuitionistic Fuzzy Set. ACTA AUTOMATICA SINICA, 2012, 38(2): 220-228. doi: 10.3724/SP.J.1004.2012.00220
Citation: ZHANG Ying-Jun, MA Pei-Jun, SU Xiao-Hong, ZHANG Chi-Ping. Multi-attribute Decision Making with Uncertain Attribute Weight Information in the Framework of Interval-valued Intuitionistic Fuzzy Set. ACTA AUTOMATICA SINICA, 2012, 38(2): 220-228. doi: 10.3724/SP.J.1004.2012.00220

属性权重不确定条件下的区间直觉模糊多属性决策


DOI: 10.3724/SP.J.1004.2012.00220
详细信息
    通讯作者: 张英俊, 哈尔滨工业大学计算机科学与技术学院博士研究生. 主要研究方向为信息融合,决策分析,专家系统和模式识别.E-mail: hitzyj@163.com

Multi-attribute Decision Making with Uncertain Attribute Weight Information in the Framework of Interval-valued Intuitionistic Fuzzy Set

More Information
  • 摘要: 在区间直觉模糊集(Interval-valued intuitionistic fuzzy set, IVIFS)的框架内,重点研究了属性权重在一定约束条件下和属性权重完全未知的 多属性群决策问题.首先利用区间直觉模糊集成算子获得方案在属性上的综合区间直觉模糊决策矩阵,进一步依据逼近理想解排序法(Technique for order preference by similarity to an ideal solution, TOPSIS) 的思想计算候选方案和理想方案的加权距离,最后确定方案排序.其中针对属性权重在一定约束条件下的决策问题,提出了基于 区间直觉模糊集精确度函数的线性规划方法,用以解决属性权重求解问题.针对属性权重完全未知的决策问题,首先定义了区间直觉 模糊熵,其次通过熵衡量每一属性所含的信息量来求解属性权重.实验结果验证了决策方法的有效性和可行性.
  • [1] Zadeh L A. Is there a need for fuzzy logic? Information Sciences, 2008, 178(13): 2751-2779[2] Atanassov K T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, 20(1): 87-96[3] Atanassov K T, Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1989, 31(3): 343-349[4] Atanassov K T. Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1994, 64(2): 159-174[5] Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems, 1996, 78(3): 305-316[6] Chaira T, Ray A K. A new measure using intuitionistic fuzzy set theory and its application to edge detection. Applied Soft Computing, 2008, 8(2): 919-927[7] Chen T Y, Li C H. Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis. Information Sciences, 2010, 180(21): 4207-4222[8] Chen S M, Tan J M. Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 1994, 67(2): 163-172[9] Chen Q, Xu Z S, Liu S S, Yu X H. A method based on interval-valued intuitionistic fuzzy entropy for multiple attribute decision making. Information: an International Interdisciplinary Journal, 2010, 13(1): 67-77[10] Cornelis C, Deschrijver G, Kerre E E. Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. International Journal of Approximate Reasoning, 2004, 35(1): 55-95[11] Hong D H, Choi C H. Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 2000, 114(1): 103-113[12] Kim S H, Ahn B S. Interactive group decision making procedure under incomplete information. European Journal of Operational Research, 1999, 116(3): 498-507[13] Li D F. TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Transactions on Fuzzy Systems, 2010, 18(2): 299-311[14] Li D F. Linear programming method for MADM with interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 2010, 37(8): 5939-5945[15] Nayagam V L G, Muralikrishnan S, Sivaraman G. Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 2011, 38(3): 1464-1467[16] Park D G, Kwun Y C, Park J H, Park I Y. Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems. Mathematical and Computer Modelling, 2009, 50(9-10): 1279-1293[17] Vlachos I K, Sergiadis G D. Subsethood, entropy, and cardinality for interval-valued fuzzy sets--an algebraic derivation. Fuzzy Sets and Systems, 2007, 158(12): 1384-1396[18] Wang Z J, Li K V, Wang W Z. An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Information Sciences, 2009, 179(17): 3026-3040[19] Xia M M, Xu Z S. Generalized point operators for aggregating intuitionistic fuzzy information. International Journal of Intelligent Systems, 2010, 25(11): 1061-1080[20] Xia M M, Xu Z S. Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment. Information Fusion, 2012, 13(1): 31-47[21] Xu Z S. Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 2007, 15(6): 1179-1187[22] Xu Z S, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 2006, 35(4): 417-433[23] Xu Z S. Intuitionistic preference relations and their application in group decision making. Information Sciences, 2007, 177(11): 2363-2379[24] Xu Z S. Models for multiple attribute decision making with intuitionistic fuzzy information. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2007, 15(3): 285-297[25] Xu Z S, Cai X Q. Incomplete interval-valued intuitionistic fuzzy preference relations. International Journal of General Systems, 2009, 38(8): 871-886[26] Xu Z S, Cai X Q. Nonlinear optimization models for multiple attribute group decision making with intuitionistic fuzzy information. International Journal of Intelligent Systems, 2010, 25(6): 489-513[27] Xu Z S. Choquet integrals of weighted intuitionistic fuzzy information. Information Sciences, 2010, 180(5): 726-736[28] Xu Z S. A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making. Group Decision and Negotiation, 2010, 19(1): 57-76[29] Xu Z S, Hu H. Projection models for intuitionistic fuzzy multiple attribute decision making. International Journal of Information Technology and Decision Making, 2010, 9(2): 267-280[30] Xu Z S, Cai X Q. Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optimization and Decision Making, 2010, 9(4): 359-381[31] Xu Z S, Yager R R. Intuitionistic fuzzy Bonferroni means. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(2): 568-578[32] Xu Z S, Xia M M. Induced generalized intuitionistic fuzzy operators. Knowledge-Based Systems, 2011, 24(2): 197-209[33] Xu Z S. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowledge-Based Systems, 2011, 24(6): 749-760[34] Xu Z S, Chen J. An interactive method for fuzzy multiple attribute group decision making. Information Sciences, 2007, 177(1): 248-263[35] Xu Z S. A method for multiple attribute decision making with incomplete weight information in linguistic setting. Knowledge-Based Systems, 2007, 20(8): 719-725[36] Xu Z S. Multi-person multi-attribute decision making models under intuitionistic fuzzy environment. Fuzzy Optimization and Decision Making, 2007, 6(3): 221-236[37] Xu Z S, Yager R R. Dynamic intuitionistic fuzzy multi-attribute decision making. International Journal of Approximate Reasoning, 2008, 48(1): 246-262[38] Xu Z S. A method based on distance measure for interval-valued intuitionistic fuzzy group decision making. Information Sciences, 2010, 180(1): 181-190[39] Xu Z S, Chen J. On geometric aggregation over interval-valued intuitionistic fuzzy information. In: Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery. Haikou, China: IEEE, 2007. 466-471[40] Xu Ze-Shui. Intuitionistic Fuzzy Information Aggregation Theory and Application. Beijing: Science Press, 2008. 1-208(徐泽水. 直觉模糊信息集成理论及应用. 北京: 科学出版社, 2008. 1-208)[41] Ye J. Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment. Expert Systems with Applications, 2009, 36(3): 6899-6902[42] Yu X H, Xu Z S, Chen Q. A method based on preference degrees for handling hybrid multiple attribute decision making problems. Expert Systems with Applications, 2011, 38(4): 3147-3154[43] Zhang Y J, Ma P J, Su X H. Pattern recognition using interval-valued intuitionistic fuzzy set and its similarity degree. In: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems. Shanghai, China: IEEE, 2009. 361-365[44] Zhao H, Xu Z S, Ni M F, Liu S S. Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems, 2010, 25(1): 1-30[45] Zhang Q S, Jiang S Y, Jia B G, Luo S H. Some information measures for interval-valued intuitionistic fuzzy sets. Information Sciences, 2010, 180(24): 5130-5145[46] Zhu Jian-Jun, Liu Si-Feng, Wang He-Hua. Aggregation approach of two kinds of three-point interval number comparison matrix in group decision making. Acta Automatica Sinica, 2007, 33(3): 297-301(朱建军, 刘思峰, 王翯华. 群决策中两类三端点区间数判断矩阵的集结方法. 自动化学报, 2007, 33(3): 297-301)[47] Xiao Di, Hu Shou-Song. Real rough set theory and attribute reduction. Acta Automatica Sinica, 2007, 33(3): 253-258(肖迪, 胡寿松. 实域粗糙集理论及属性约简. 自动化学报, 2007, 33(3): 253-258)[48] Wang Hong-Wei, Qi Chao, Wei Yong-Chang, Li Bin, Zhu Song. Review on data-based decision making methodologies. Acta Automatica Sinica, 2009, 35(6): 820-833(王红卫, 祁超, 魏永长, 李彬, 朱松. 基于数据的决策方法综述. 自动化学报, 2009, 35(6): 820-833)
  • [1] 左兴权, 王春露, 赵新超. 一种结合多目标免疫算法和线性规划的双行设备布局方法[J]. 自动化学报, 2015, 41(3): 528-540. doi: 10.16383/j.aas.2015.c140082
    [2] 岑丽辉, 席裕庚. 明渠网络中基于带权Lyapunov函数的边界反馈控制稳定性[J]. 自动化学报, 2009, 35(1): 97-102. doi: 10.3724/SP.J.1004.2009.00097
    [3] 兰奇逊, 梁家荣, 高许岗. 不确定广义双线性系统的鲁棒镇定[J]. 自动化学报, 2008, 34(6): 707-710. doi: 10.3724/SP.J.1004.2008.00707
    [4] 刘杰, 王普, 刘炳章. 最大熵试验法及其应用[J]. 自动化学报, 2007, 33(11): 1226-1228. doi: 10.1360/aas-007-1226
    [5] 祖迪, 韩建达, 谈大龙. 加速度空间中基于线性规划的移动机器人路径规划方法[J]. 自动化学报, 2007, 33(10): 1036-1043. doi: 10.1360/aas-007-1036
    [6] 孙凤梅, 胡宇, 胡占义. 直线提取中的不确定性研究[J]. 自动化学报, 2003, 29(4): 589-598.
    [7] 田大钢. 对偶性和线性规划问题的神经网络解法[J]. 自动化学报, 2003, 29(2): 219-226.
    [8] 胡中骥, 施颂椒, 翁正新. 一类多不确定性系统鲁棒H∞控制器的LMI设计方法[J]. 自动化学报, 2002, 28(2): 192-200.
    [9] 郑连伟, 刘晓平, 张庆灵. 具有时变不确定性的线性时滞系统的鲁棒H∞控制[J]. 自动化学报, 2001, 27(3): 377-380.
    [10] 尚群立, 薛安克, 孙优贤. 时滞不确定线性互联大系统分散鲁棒H∞控制[J]. 自动化学报, 2000, 26(5): 695-699.
    [11] 费树岷, 冯纯伯, 宋士吉. 非线性不确定系统的鲁棒性研究[J]. 自动化学报, 2000, 26(5): 700-703.
    [12] 王向东, 高立群, 张嗣瀛. 一类不确定非线性系统的鲁棒H∞控制[J]. 自动化学报, 1999, 25(2): 221-225.
    [13] 陈东彦, 徐世杰, 邵成勋. 非线性时滞系统的稳定性分析及鲁棒稳定性条件[J]. 自动化学报, 1999, 25(6): 833-837.
    [14] 田大钢, 费奇. 一种新的线性规划问题的神经网络解法[J]. 自动化学报, 1999, 25(5): 709-712.
    [15] 陆国平, 郑毓蕃. 一类非线性不确定系统的鲁棒H∞控制[J]. 自动化学报, 1999, 25(3): 388-392.
    [16] 卢立磊, 高立群, 张嗣瀛. 结构不确定线性时滞系统的鲁棒控制[J]. 自动化学报, 1998, 24(3): 345-349.
    [17] 梅生伟, 秦化淑, 洪奕光. 一类非线性MIMO不确定系统的动态输出反馈镇定[J]. 自动化学报, 1997, 23(5): 649-653.
    [18] 倪茂林, 谌颖. 含时变不确定性线性系统的鲁棒跟踪控制[J]. 自动化学报, 1993, 19(5): 513-519.
    [19] 谢利理. 不确定非线性系统的变结构鲁棒控制[J]. 自动化学报, 1992, 18(4): 494-497.
    [20] 西广成. 生态经济区划的熵方法[J]. 自动化学报, 1990, 16(2): 170-173.
  • 加载中
计量
  • 文章访问数:  1947
  • HTML全文浏览量:  70
  • PDF下载量:  1230
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-06
  • 修回日期:  2011-06-13
  • 刊出日期:  2012-02-20

属性权重不确定条件下的区间直觉模糊多属性决策

doi: 10.3724/SP.J.1004.2012.00220
    通讯作者: 张英俊, 哈尔滨工业大学计算机科学与技术学院博士研究生. 主要研究方向为信息融合,决策分析,专家系统和模式识别.E-mail: hitzyj@163.com

摘要: 在区间直觉模糊集(Interval-valued intuitionistic fuzzy set, IVIFS)的框架内,重点研究了属性权重在一定约束条件下和属性权重完全未知的 多属性群决策问题.首先利用区间直觉模糊集成算子获得方案在属性上的综合区间直觉模糊决策矩阵,进一步依据逼近理想解排序法(Technique for order preference by similarity to an ideal solution, TOPSIS) 的思想计算候选方案和理想方案的加权距离,最后确定方案排序.其中针对属性权重在一定约束条件下的决策问题,提出了基于 区间直觉模糊集精确度函数的线性规划方法,用以解决属性权重求解问题.针对属性权重完全未知的决策问题,首先定义了区间直觉 模糊熵,其次通过熵衡量每一属性所含的信息量来求解属性权重.实验结果验证了决策方法的有效性和可行性.

English Abstract

张英俊, 马培军, 苏小红, 张池平. 属性权重不确定条件下的区间直觉模糊多属性决策. 自动化学报, 2012, 38(2): 220-228. doi: 10.3724/SP.J.1004.2012.00220
引用本文: 张英俊, 马培军, 苏小红, 张池平. 属性权重不确定条件下的区间直觉模糊多属性决策. 自动化学报, 2012, 38(2): 220-228. doi: 10.3724/SP.J.1004.2012.00220
ZHANG Ying-Jun, MA Pei-Jun, SU Xiao-Hong, ZHANG Chi-Ping. Multi-attribute Decision Making with Uncertain Attribute Weight Information in the Framework of Interval-valued Intuitionistic Fuzzy Set. ACTA AUTOMATICA SINICA, 2012, 38(2): 220-228. doi: 10.3724/SP.J.1004.2012.00220
Citation: ZHANG Ying-Jun, MA Pei-Jun, SU Xiao-Hong, ZHANG Chi-Ping. Multi-attribute Decision Making with Uncertain Attribute Weight Information in the Framework of Interval-valued Intuitionistic Fuzzy Set. ACTA AUTOMATICA SINICA, 2012, 38(2): 220-228. doi: 10.3724/SP.J.1004.2012.00220
参考文献 (1)

目录

    /

    返回文章
    返回