2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变结构动态贝叶斯网络的机制研究

高晓光 陈海洋 史建国

高晓光, 陈海洋, 史建国. 变结构动态贝叶斯网络的机制研究. 自动化学报, 2011, 37(12): 1435-1444. doi: 10.3724/SP.J.1004.2011.01435
引用本文: 高晓光, 陈海洋, 史建国. 变结构动态贝叶斯网络的机制研究. 自动化学报, 2011, 37(12): 1435-1444. doi: 10.3724/SP.J.1004.2011.01435
GAO Xiao-Guang, CHEN Hai-Yang, SHI Jian-Guo. Study on the Mechanism of Structure-variable Dynamic Bayesian Networks. ACTA AUTOMATICA SINICA, 2011, 37(12): 1435-1444. doi: 10.3724/SP.J.1004.2011.01435
Citation: GAO Xiao-Guang, CHEN Hai-Yang, SHI Jian-Guo. Study on the Mechanism of Structure-variable Dynamic Bayesian Networks. ACTA AUTOMATICA SINICA, 2011, 37(12): 1435-1444. doi: 10.3724/SP.J.1004.2011.01435

变结构动态贝叶斯网络的机制研究

doi: 10.3724/SP.J.1004.2011.01435
详细信息
    通讯作者:

    陈海洋 博士,西安工程大学电子信息学院讲师. 主要研究方向为先进控制理论及应用. E-mail: chy_00@163.com

Study on the Mechanism of Structure-variable Dynamic Bayesian Networks

  • 摘要: 传统的动态贝叶斯网络(Dynamic Bayesian networks, DBNs)描述的是一个稳态过程,而处理非稳态过程,变结构动态贝叶斯网络更适 用、更灵活、更有效.为了克服现有变结构离散 动态贝叶斯网络推理算法只能处理硬证据的缺陷,本文在深入分析变结构动态贝叶斯网络机制及其特 征的基础上,提出了变结构离散动态贝叶斯网络的 快速推理算法.此外,对变结构动态贝叶斯网络的特例,即数据缺失动态贝叶斯网络进行了定义并构建 了相应的模型.仿真实验验证了变结构离散动态贝 叶斯网络快速推理算法的有效性及计算效率.
  • [1] Jensen F V. An Introduction to Bayesian Networks. New York: Springer, 1996[2] Jensen F V. Bayesian Networks and Decision Graphs. New York: Springer, 2001[3] Dean T, Kanazawa K. A model for reasoning about persistence and causation. Computational Intelligence, 1989, 5(3): 142-150[4] Rusell S, Norving P. Artificial Intelligence: A Modern Approach (Second Edition). New Jersey: Prentice Hall, 2003. 559-580[5] Suandi S A, Enokida S, Ejima T. Face pose estimation from video sequence using dynamic Bayesian network. In: Proceedings of the IEEE Workshop on Motion and Video Computing. Copper Mountain, USA: IEEE, 2008. 1-8[6] Han P X, Mu R J, Cui N G. Active and dynamic multi-sensor information fusion method based on dynamic Bayesian networks. In: Proceedings of the International Conference on Mechatronics and Automation. Changchun, China: IEEE, 2009. 3076-3080[7] Du You-Tian, Chen Feng, Xu Wen-Li. Approach to human activity multi-scale analysis and recognition based on multi-layer dynamic Bayesian network. Acta Automatica Sinica, 2009, 35(3): 225-232(杜友田, 陈峰, 徐文立. 基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法. 自动化学报, 2009, 35(3): 225-232)[8] Peter Hearty, Norman Fenton, David Marquez, Martin Neil. Predicting project velocity in XP using a learning dynamic Bayesian network model. IEEE Transactions on Software Engineering, 2009, 35(1): 124-137[9] Jin Nai-Gao, Yin Fu-Liang, Chen Zhe. Audio-visual speaker tracking based on dynamic Bayesian network. Acta Automatica Sinica, 2008, 34(9): 1083-1089(金乃高, 殷福亮, 陈喆. 基于动态贝叶斯网络的音视频联合说话人跟踪. 自动化学报, 2008, 34(9): 1083-1089)[10] Ghahramani Z. An introduction to hidden Markov models and Bayesian networks. International Journal of Pattern Recognition and Artificial Intelligence, 2001, 15(1): 9-42[11] Murphy K. Dynamic Bayesian Networks: Representation, Inference and Learning [Ph.D. dissertation], University of California, USA, 2002[12] Kalman R E. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 1960, 82(Series D): 35-45[13] Roweis S, Ghahramani Z. A unifying review of linear Gaussian models. Neural Computation, 11(2): 305-345[14] Zhang Lian-Wen, Guo Hai-Peng. Introduction to Bayesian Networks. Beijing: Science Press, 2006. 62-64(张连文, 郭海鹏. 贝叶斯网引论. 北京: 科学出版社, 2006. 62-64)[15] Chen Hai-Yang, Gao Xiao-Guang, Fan Hao. Inference algorithm of variable structure DDBNs and multi-target recognition. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2222-2227(陈海洋, 高晓光, 樊昊. 变结构DDBNs的推理算法与多目标识别. 航空学报, 2010, 31(11): 2222-2227)[16] Gao Xiao-Guang, Shi Jian-Guo. Structure varied discrete dynamic Bayesian network and its inference algorithm. Journal of Systems Engineering, 2007, 22(1): 9-14(高晓光, 史建国. 变结构离散动态贝叶斯网络及其推理算法. 系统工程学报, 2007, 22(1): 9-14)[17] Chen H Y, Gao X G. Ship recognition based on improved forwards-backwards algorithm. In: Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery. Tianjin, China: IEEE, 2009. 509-513[18] Shi Jian-Guo, Gao Xiao-Guang. Direct calculation inference algorithm for discrete dynamic Bayesian network. Systems Engineering and Electronics, 2005, 27(9): 1626-1630(史建国, 高晓光. 离散动态贝叶斯网络的直接计算推理算法. 系统工程与电子技术, 2005, 27(9): 1626-1630)[19] Chen H Y, Gao X G, Zheng J S. A kind of data repairing for missing data of discrete dynamic Bayesian networks. In: Proceedings of the 5th International Conference on Natural Computation. Tianjin, China: IEEE, 2009. 47-51[20] Chen H Y, Gao X G. Forwards-backwards information repairing algorithm and appliance on discrete dynamic Bayesian networks. In: Proceedings of the International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou, China: IEEE, 2009. 76-80
  • 加载中
计量
  • 文章访问数:  1974
  • HTML全文浏览量:  69
  • PDF下载量:  1173
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-11
  • 修回日期:  2011-06-14
  • 刊出日期:  2011-12-20

目录

    /

    返回文章
    返回