2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于质量关联虚拟变量的质量相关变量划分及故障检测

刘美枝 孔祥玉 胡昌华

刘美枝, 孔祥玉, 胡昌华. 基于质量关联虚拟变量的质量相关变量划分及故障检测. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240627
引用本文: 刘美枝, 孔祥玉, 胡昌华. 基于质量关联虚拟变量的质量相关变量划分及故障检测. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240627
Liu Mei-Zhi, Kong Xiang-Yu, Hu Chang-Hua. Quality-related variable division and fault detection based on quality-related virtual variable. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240627
Citation: Liu Mei-Zhi, Kong Xiang-Yu, Hu Chang-Hua. Quality-related variable division and fault detection based on quality-related virtual variable. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240627

基于质量关联虚拟变量的质量相关变量划分及故障检测

doi: 10.16383/j.aas.c240627 cstr: 32138.14.j.aas.c240627
基金项目: 国家自然科学基金(62273354, 62227814), 山西省高等学校科技创新项目(2022L434)资助
详细信息
    作者简介:

    刘美枝:山西大同大学讲师, 火箭军工程大学导弹工程学院博士研究生. 2014年获得西安交通大学硕士学位. 主要研究方向为特征提取, 故障检测与诊断. E-mail: lmzdtdx@163.com

    孔祥玉:火箭军工程大学导弹工程学院教授. 2005年获得西安交通大学博士学位. 主要研究方向为自适应信号处理, 特征提取, 故障检测与诊断. 本文通信作者. E-mail: xiangyukong01@163.com

    胡昌华:火箭军工程大学导弹工程学院教授. 1996年获得西北工业大学博士学位. 主要研究方向为故障检测与诊断, 寿命预测和容错控制. E-mail: hch666@163.com

Quality-related Variable Division and Fault Detection Based on Quality-related Virtual Variable

Funds: Supported by National Natural Science Foundation of China (62273354, 62227814) and Scientific Innovation Foundation of the Higher Education Institutions of Shanxi Province (2022L434)
More Information
    Author Bio:

    LIU Mei-Zhi Lecturer at Shanxi Datong University, Ph.D. candidate at the College of Missile Engineering, Rocket Force University of Engineering. She received her master degree from Xi'an Jiaotong University in 2015. Her research interest covers feature extraction, fault detection and diagnosis

    KONG Xiang-Yu Professor at the College of Missile Engineering, Rocket Force University of Engineering. He received the Ph.D. degree from Xi’an Jiaotong University in 2005. His research interest covers adaptive signal processing, feature extraction, fault detection and diagnosis. Corresponding author of this paper

    HU Chang-Hua Professor at the College of Missile Engineering, Rocket Force University of Engineering. He received the Ph.D. degree from Northwestern Polytechnical University in 1996. His research interest covers fault detection and diagnosis, life prognosis, and fault tolerant control

  • 摘要: 质量相关故障检测作为数据驱动的多元统计过程监测的重要研究内容, 是保障复杂装备或工业过程安全高效运行的关键技术, 而确定或划分质量相关变量是该方法的核心环节. 现有质量相关故障检测方法通常高度依赖于质量变量, 一旦质量变量不可测, 其有效性便受到严重挑战. 为解决这一挑战, 本文提出基于质量关联虚拟变量(Quality-related virtual variable, QRV)的质量相关变量划分方法, 基于此建立一种独立成分分析(Independent component analysis, ICA)质量相关故障检测模型, 并开展故障检测应用研究. 首先, 构造一个QRV, 以间接反映系统的质量特性; 其次, 基于该QRV, 利用假设检验将过程变量划分为质量相关和质量无关变量组; 随后, 将该划分结果应用于基于ICA的质量相关故障检测, 利用指数加权移动平均(Exponentially weighted moving average, EWMA)修正统计量, 并构造综合检测指标; 最后, 通过数值仿真和田纳西—伊斯曼过程(Tennessee-Eastman process, TEP)实验验证了所提方法的可行性和有效性.
  • 图  1  基于QRV的质量相关变量划分方法的整体框架

    Fig.  1  Overall framework of the quality-related variable division method based on QRV

    图  2  时间序列分块示意图

    Fig.  2  Schematic diagram of time series chunking

    图  3  基于QRVICA的质量相关故障检测流程图

    Fig.  3  Flowchart of quality-related fault detection based on QRVICA

    图  4  数值仿真过程变量划分结果

    Fig.  4  Division results of process variable in numerical simulation

    图  5  变量的变化趋势及其包络线

    Fig.  5  The trend of the variables and their envelope

    图  6  各变量之间的相关系数

    Fig.  6  Correlation coefficients between variables

    图  7  故障1的故障检测结果

    Fig.  7  Fault detection results of fault 1

    图  8  故障2的故障检测结果

    Fig.  8  Fault detection results of fault 2

    图  9  TEP过程变量划分结果

    Fig.  9  Division results of process variable in TEP

    图  10  IDV(5)中不同变量组对质量变量的回归结果

    Fig.  10  Regression results of the quality variable for different variable groups in IDV(5)

    图  11  IDV(10)的故障检测结果

    Fig.  11  Fault detection results of the IDV(10)

    图  12  IDV(11)的故障检测结果

    Fig.  12  Fault detection results of the IDV(11)

    表  1  质量相关故障的FARs和FDRs(%)

    Table  1  FARs and FDRs of the quality-related faults (%)

    算法故障
    编号
    MI-KPCA MKICR VIP-DCPLS OMDPLS QRVICA-without-EWMA QRVICA
    FAR ($\hat T^2$) FDR (${{\hat{T}}^{2}}$) FAR ($\hat I^2$) FDR (${{\hat{I}}^{2}}$) FAR (${{d}_{r}}$) FDR (${{d}_{r}}$) FAR ($T^2$) FDR ($T^2$) FAR (${\varphi }_{\text{r}}$) FDR (${\varphi }_{\text{r}}$) FAR (${\varphi }_{\text{r}}$) FDR (${\varphi }_{\text{r}}$)
    1 0.30 99.62 0.63 69.13 0.00 99.75 2.50 99.63 0.00 99.75 {0.00} 99.75
    2 0.00 98.50 0.63 96.88 0.00 96.50 0.63 97.75 0.00 98.25 0.00 98.50
    5 0.00 24.12 0.63 20.62 0.63 24.00 1.25 19.25 0.00 24.13 0.00 25.12
    6 0.00 99.75 0.00 100.00 0.00 100.00 3.13 98.75 0.00 100.00 0.00 100.00
    7 0.00 40.75 0.63 35.13 0.00 40.88 1.87 64.50 0.00 37.00 0.00 37.62
    8 2.40 97.62 3.75 76.00 1.25 97.75 1.25 88.13 0.00 97.63 0.00 97.50
    10 0.00 79.87 0.00 63.38 0.00 55.63 0.63 54.00 0.63 80.63 0.00 84.88
    12 1.25 98.88 21.88 74.13 0.00 98.75 1.25 83.88 0.00 99.25 0.00 99.62
    13 0.00 94.63 1.25 85.38 0.00 95.25 0.63 93.75 0.00 93.75 0.00 94.75
    平均 0.44 81.53 3.27 68.96 0.21 78.72 1.46 77.74 0.07 81.15 0.00 81.97
    下载: 导出CSV

    表  2  质量无关故障的FARs和FDRs(%)

    Table  2  FARs and FDRs of the quality-unrelated faults (%)

    算法故障
    编号
    MI-KPCA MKICR VIP-DCPLS OMDPLS QRVICA-without-EWMA QRVICA
    FAR ($\hat T^2$) FDR (${{\tilde{T}}^{2}}$) FAR ($\hat I^2$) FDR (${{\tilde{I}}^{2}}$) FAR (${{d}_{r}}$) FDR (${{d}_{u}}$) FAR ($T^2$) FDR ($Q$) FAR (${\varphi }_{\text{r}}$) FDR (${\varphi }_{\text u}$) FAR (${\varphi }_{\text{r}}$) FDR (${\varphi }_{\text u}$)
    4 0.10 100.00 3.75 100.00 1.25 99.00 13.00 100.00 0.10 100.00 0.00 100.00
    11 2.40 69.87 12.00 83.63 2.62 66.50 17.88 79.50 0.31 73.88 0.00 83.75
    14 0.00 100.00 17.88 100.00 0.37 100.00 99.38 99.88 0.21 100.00 0.00 100.00
    平均 0.83 89.96 11.21 94.54 1.41 88.50 43.42 93.13 0.21 91.29 0.00 94.58
    下载: 导出CSV
  • [1] 董洁, 张伟, 彭开香, 马亮. 一种面向工业过程的质量异常检测与故障量化评估方法. 自动化学报, 2022, 48(10): 2406−2415

    Dong Jie, Zhang Wei, Peng Kai-Xiang, Ma Liang. A novel method of quality abnormality detection and fault quantitative assessment for industrial processes. Acta Automatica Sinica, 2022, 48(10): 2406−2415
    [2] 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述. 自动化学报, 2017, 43(3): 349−365

    Peng Kai-Xiang, Ma Liang, Zhang Kai. Review of quality-related fault detection and diagnosis techniques in complex industrial processes. Acta Automatica Sinica, 2017, 43(3): 349−365
    [3] Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56(1): 168−178 doi: 10.1002/aic.11977
    [4] Ding S X, Yin S, Peng K X, Hao H Y, Shen B. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2239−2247 doi: 10.1109/TII.2012.2214394
    [5] Jiao J F, Zhao N, Wang G, Yin S. A nonlinear quality-related fault detection approach based on modified kernel partial least squares. ISA Transactions, 2017, 66: 275−283 doi: 10.1016/j.isatra.2016.10.015
    [6] Peng K X, Zhang K, Li G. Quality-related process monitoring based on total kernel PLS model and its industrial application. Mathematical Problems in Engineering, 2013, 2013: Article No. 707953
    [7] Hu C H, Luo J Y, Kong X Y, Xu Z Y. Orthogonal multi-block dynamic PLS for quality-related process monitoring. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 3421−3434 doi: 10.1109/TASE.2023.3279575
    [8] Si Y B, Wang Y Q, Zhou D H. Key-performance-indicator-related process monitoring based on improved kernel partial least squares. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2626−2636 doi: 10.1109/TIE.2020.2972472
    [9] Wang G, Luo H, Peng K X. Quality-related fault detection using linear and nonlinear principal component regression. Journal of the Franklin Institute, 2016, 353(10): 2159−2177 doi: 10.1016/j.jfranklin.2016.03.021
    [10] Chen Q, Wang Y Q. Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis. Control Engineering Practice, 2021, 107: Article No. 104692 doi: 10.1016/j.conengprac.2020.104692
    [11] 宋冰, 郑城风, 侍洪波, 陶阳, 谭帅. 基于VAE-OCCA的质量相关故障检测方法研究. 化工学报, 2023, 74(4): 1630−1638

    Song Bing, Zheng Cheng-feng, Shi Hong-bo. TAO Yang, TAN Shuai. Research on quality-related fault detection method based on VAE OCCA. CIESC Journal, 2023, 74(4): 1630−1638
    [12] Du W, Fan Y, Zhang Y, Zhang J. Fault diagnosis of non-Gaussian process based on FKICA. Journal of the Franklin Institute, 2017, 354(6): 2573−2590 doi: 10.1016/j.jfranklin.2016.11.012
    [13] Dong J, Wang Y, Peng K. A novel fault detection method based on the extraction of slow features for dynamic nonstationary processes. IEEE Transactions on Instrumentation and Measurement, 2022, 71: Article No. 3500611
    [14] Wang G, Yang J H, Qian Y C, Han J S, Jiao J F. KPCA-CCA-based quality-related fault detection and diagnosis method for nonlinear process monitoring. IEEE Transactions on Industrial Informatics, 2023, 19(5): 6492−6501 doi: 10.1109/TII.2022.3204555
    [15] Liu M Z, Kong X Y, Luo J Y, Yang L. Fault detection and diagnosis in a non-Gaussian process with modified kernel independent component regression. The Canadian Journal of Chemical Engineering, 2023, 102(2): 781−802
    [16] Zhang X Y, Ma L, Peng K X, Zhang C F. A quality-related distributed fault detection method for large-scale sequential processes. Control Engineering Practice, 2022, 127: Article No. 105308 doi: 10.1016/j.conengprac.2022.105308
    [17] Huang J P, Yan X F. Quality relevant and independent two block monitoring based on mutual information and KPCA. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6518−6527 doi: 10.1109/TIE.2017.2682012
    [18] Huang J, Yang X, Peng K. Double-layer distributed monitoring based on sequential correlation information for large-scale industrial processes in dynamic and static states. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6419−6428 doi: 10.1109/TII.2020.3019499
    [19] Fan H P, Lai X Z, Du S, Yu W K, Lu C D, Wu M. Distributed monitoring with integrated probability PCA and mRMR for drilling processes. IEEE Transactions on Instrumentation and Measurement, 2022, 71: Article No. 3516213
    [20] Yu W K, Zhao C H, Huang B, Xie M. Intrinsic causality embedded concurrent quality and process monitoring strategy. IEEE Transactions on Industrial Electronics, 2024, 71(11): 15111−15121 doi: 10.1109/TIE.2024.3370955
    [21] Jiao J F, Zhen W T, Zhu W X, Wang G. Quality-related root cause diagnosis based on orthogonal kernel principal component regression and transfer entropy. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6347−6356 doi: 10.1109/TII.2020.2989810
    [22] Yang J, Wang J Y, Sha J L, Dai H Q, Liu H B. Quality-related monitoring of distributed process systems using dynamic concurrent partial least squares. Computers & Industrial Engineering, 2022, 164: Article No. 107893
    [23] Yang J, Wang J Y, Ye Q L, Xiong Z X, Zhang F S, Liu H B. A novel fault detection framework integrated with variable importance analysis for quality-related nonlinear process monitoring. Control Engineering Practice, 2023, 141: Article No. 105733 doi: 10.1016/j.conengprac.2023.105733
    [24] Guo L, Shi H B, Tan S, Song B, Tao Y. A knowledge-driven spatial-temporal graph neural network for quality-related fault detection. Process Safety and Environmental Protection, 2024, 184: 1512−1524 doi: 10.1016/j.psep.2024.02.070
    [25] Zhu J Z, Shi H B, Song B, Tao Y, Tan S. Convolutional neural network based feature learning for large-scale quality-related process monitoring. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4555−4565 doi: 10.1109/TII.2021.3124578
    [26] Lee J-M, Yoo C, Lee I-B. Statistical process monitoring with independent component analysis. Journal of Process Control, 2004, 14(5): 467−485 doi: 10.1016/j.jprocont.2003.09.004
    [27] Downs J, Vogel E F. A plant-wide industrial process control problem. Computers and Chemical Engineering, 1993, 17(3): 245−255 doi: 10.1016/0098-1354(93)80018-I
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-11
  • 录用日期:  2025-01-06
  • 网络出版日期:  2025-02-12

目录

    /

    返回文章
    返回