2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于固定时间模型参考方法的倾转旋翼无人机姿态控制

朱纪洪 张骁骏 杨赟杰 袁夏明

朱纪洪, 张骁骏, 杨赟杰, 袁夏明. 基于固定时间模型参考方法的倾转旋翼无人机姿态控制. 自动化学报, 2025, 51(5): 1−13 doi: 10.16383/j.aas.c240621
引用本文: 朱纪洪, 张骁骏, 杨赟杰, 袁夏明. 基于固定时间模型参考方法的倾转旋翼无人机姿态控制. 自动化学报, 2025, 51(5): 1−13 doi: 10.16383/j.aas.c240621
Zhu Ji-Hong, Zhang Xiao-Jun, Yang Yun-Jie, Yuan Xia-Ming. Attitude control of tilt-rotor unmanned aerial vehicle based on fixed-time model reference method. Acta Automatica Sinica, 2025, 51(5): 1−13 doi: 10.16383/j.aas.c240621
Citation: Zhu Ji-Hong, Zhang Xiao-Jun, Yang Yun-Jie, Yuan Xia-Ming. Attitude control of tilt-rotor unmanned aerial vehicle based on fixed-time model reference method. Acta Automatica Sinica, 2025, 51(5): 1−13 doi: 10.16383/j.aas.c240621

基于固定时间模型参考方法的倾转旋翼无人机姿态控制

doi: 10.16383/j.aas.c240621 cstr: 32138.14.j.aas.c240621
基金项目: 国家自然科学基金(62203259, 62073185), 中航工业成都飞机设计研究所预研项目, 航空科学基金(20240058058001)资助
详细信息
    作者简介:

    朱纪洪:清华大学精密仪器系、时空信息精密感知技术全国重点实验室教授. 主要研究方向为先进飞行器动力学与智能控制技术. E-mail: jhzhu@tsinghua.edu.cn

    张骁骏:中航工业成都飞机设计研究所工程师. 主要研究方向为飞行器设计及飞行控制技术. E-mail: xj-zhang31@foxmail.com

    杨赟杰:清华大学精密仪器系、时空信息精密感知技术全国重点实验室助理研究员. 主要研究方向为飞行动力学与非线性控制技术. 本文通信作者. E-mail: yangyunjie@tsinghua.edu.cn

    袁夏明:清华大学精密仪器系、时空信息精密感知技术全国重点实验室助理研究员. 主要研究方向为无人系统及智能控制技术. E-mail: xmyuan@tsinghua.edu.cn

Attitude Control of Tilt-rotor Unmanned Aerial Vehicle Based on Fixed-time Model Reference Method

Funds: Supported by National Natural Science Foundation of China (62203259, 62073185), Pre-research Project of AVIC Chengdu Aircraft Design and Research Institute, Aeronautical Science Foundation of China (20240058058001)
More Information
    Author Bio:

    ZHU Ji-Hong Professor in the Department of Precision Instrument, Tsinghua University, and the State Key Laboratory of Precision Space-time Information Sensing Technology. His research interest covers advanced aircraft dynamics and intelligent control technology

    ZHANG Xiao-Jun Engineer at AVIC Chengdu Aircraft Design and Research Institute. His research interest covers aircraft design and flight control technology

    YANG Yun-Jie Assistant researcher in the Department of Precision Instrument, Tsinghua University, and the State Key Laboratory of Precision Space-time Information Sensing Technology. His research interest covers flight dynamics and nonlinear control technology. Corresponding author of this paper

    YUAN Xia-Ming Assistant researcher in the Department of Precision Instrument, Tsinghua University, and the State Key Laboratory of Precision Space-time Information Sensing Technology. His research interest covers unmanned system and intelligent control technology

  • 摘要: 倾转旋翼无人机(Unmanned aerial vehicle, UAV)动力学特性复杂, 过渡过程中的变速变构型特性导致系统具有较大的模型不确定性, 且容易受到阵风扰动等影响, 对姿态控制律设计提出很高要求. 针对该问题, 本文建立一种扰动观测器结合终端滑模补偿器的模型参考姿态控制方法. 基于齐次系统理论设计固定时间收敛扰动观测器, 实现对倾转旋翼无人机未建模动态和外部扰动的准确估计; 基于一种新型非线性饱和函数设计固定时间收敛终端滑模控制器, 结合低通滤波实现对指令的快速高品质跟踪; 为进一步解决控制奇异性问题, 提出在纵轴附近邻域对控制器的改进策略. 仿真结果表明, 所提方法在应对倾转旋翼无人机模型不确定性和外部扰动方面具有较强的鲁棒性, 相比基于有限时间稳定性理论的模型参考姿态控制方法, 固定时间收敛控制提供了更高的控制精度和更平滑的输出.
  • 图  1  倾转旋翼无人机全包线典型飞行状态

    Fig.  1  Typical flight modes of tilt-rotor unmanned aerial vehicles throughout the entire flight envelope

    图  2  倾转旋翼无人机布局

    Fig.  2  Tilt-rotor unmanned aerial vehicle configuration

    图  3  模型参考姿态控制器架构

    Fig.  3  Model reference attitude controller architecture

    图  4  闭环系统相平面图

    Fig.  4  Closed-loop system phase plane diagram

    图  5  仿真中加入的风扰动

    Fig.  5  Wind disturbance added to the simulation

    图  6  有限时间模型参考控制垂转平仿真结果

    Fig.  6  Simulation results during the hover to cruise transition flight under the finite-time model reference control

    图  7  有限时间模型参考控制平转垂仿真结果

    Fig.  7  Simulation results during the cruise to hover transition flight under the finite-time model reference control

    图  8  固定时间模型参考控制垂转平仿真结果

    Fig.  8  Simulation results during the hover to cruise transition flight under the fixed-time model reference control

    图  9  固定时间模型参考控制平转垂仿真结果

    Fig.  9  Simulation results during the cruise to hover transition flight under the fixed-time model reference control

    表  1  参考模型参数

    Table  1  Reference model parameters

    通道 $ a_{m1} $ $ a_{m2} $
    滚转 $ {\left( {1 + V_x^b/15} \right)^2} $ $ 1.8 + 0.12V_x^b $
    俯仰 $ \left( {2 + V_x^b/10} \right)^2 $ $ 3.2 + 0.16V_x^b $
    偏航 $ {\left( {1 + V_x^b/60} \right)^2} $ $ 2.0 + V_x^b/30 $
    下载: 导出CSV

    表  2  有限时间模型参考控制器参数

    Table  2  Finite-time model reference controller parameters

    通道 $ p $ $ \alpha $ $ p_s $ $ \alpha_s $ $ D_o $ $ \alpha_o $ $ k_1 $ $ k_2 $
    滚转 0.6 1.2 1 5/9 0.8 0.95 20 100
    俯仰 0.8 1.2 1 1/3 3.0 0.95 20 100
    偏航 0.3 1.2 1 5/9 0.8 0.95 20 100
    下载: 导出CSV

    表  3  固定时间模型参考控制器参数

    Table  3  Fixed-time model reference controller parameters

    通道 $ p $ $ \mu $ $ c $ $ p_s $ $ \mu_s $ $ c_s $ $ D_o $ $ \alpha_o $ $ k_1 $ $ k_2 $ $ \beta_o $ $ l_1 $ $ l_2 $
    滚转 0.5 2/9 1 1.0 3/9 2 0.5 0.94 20 100 1.06 20 100
    俯仰 1.0 2/9 2 1.5 4/9 2 2 0.94 20 100 1.06 30 225
    偏航 0.5 2/9 1 1.0 3/9 2 0.5 0.94 20 100 1.06 20 100
    下载: 导出CSV

    表  4  有限/固定时间模型参考控制方法性能指标对比

    Table  4  Comparison of performance indexes of finite-time/fixed-time model reference control methods

    设计方法 $ T_E^z $ $ T_E^{\phi} $ $ T_E^{\theta} $ $ T_E^{\psi} $ $ T_E^{o\phi} $ $ T_E^{o\theta} $ $ T_E^{o\psi} $ $ T_V^{\phi} $ $ T_V^{\theta} $ $ T_V^{\psi} $
    有限时间 26.57 0.06 0.55 0.08 0.44 11.42 0.56 125.73 598.62 147.77
    固定时间 23.73 0.05 0.38 0.06 0.41 9.65 0.56 87.76 520.64 120.94
    下载: 导出CSV
  • [1] Misra A, Jayachandran S, Kenche S, Katoch A, Suresh A, Gundabattini E, et al. A review on vertical take-off and landing (VTOL) tilt-rotor and tilt wing unmanned aerial vehicles (UAVs). Journal of Engineering, 2022, 2022(1): Article No. 1803638

    Misra A, Jayachandran S, Kenche S, Katoch A, Suresh A, Gundabattini E, et al. A review on vertical take-off and landing (VTOL) tilt-rotor and tilt wing unmanned aerial vehicles (UAVs). Journal of Engineering, 2022, 2022(1): Article No. 1803638
    [2] Hegde N T, George V I, Nayak C G, Kumar K. Design, dynamic modelling and control of tilt-rotor UAVs: A review. International Journal of Intelligent Unmanned Systems, 2019, 8(3): 143−161

    Hegde N T, George V I, Nayak C G, Kumar K. Design, dynamic modelling and control of tilt-rotor UAVs: A review. International Journal of Intelligent Unmanned Systems, 2019, 8(3): 143−161
    [3] Eskandarpour A, Mehrandezh M, Gupta K, Ramirez-Serrano A, Soltanshah M. A constrained robust switching MPC structure for tilt-rotor UAV trajectory tracking problem. Nonlinear Dynamics, 2023, 111(18): 17247−17275

    Eskandarpour A, Mehrandezh M, Gupta K, Ramirez-Serrano A, Soltanshah M. A constrained robust switching MPC structure for tilt-rotor UAV trajectory tracking problem. Nonlinear Dynamics, 2023, 111(18): 17247−17275
    [4] Govdeli Y, Bin Muzaffar S M, Raj R, Elhadidi B, Kayacan E. Unsteady aerodynamic modeling and control of pusher and tilt-rotor quadplane configurations. Aerospace Science and Technology, 2019, 94: Article No. 105421

    Govdeli Y, Bin Muzaffar S M, Raj R, Elhadidi B, Kayacan E. Unsteady aerodynamic modeling and control of pusher and tilt-rotor quadplane configurations. Aerospace Science and Technology, 2019, 94: Article No. 105421
    [5] Wang Z G, Wang Q N, Yu H R, Duan D Y, Ding Z W, Li J B. Trimming analysis method of quad tilt rotor based on aerodynamic interference model. Journal of Aircraft, 2021, 58(2): 253−265

    Wang Z G, Wang Q N, Yu H R, Duan D Y, Ding Z W, Li J B. Trimming analysis method of quad tilt rotor based on aerodynamic interference model. Journal of Aircraft, 2021, 58(2): 253−265
    [6] Li W, Shi S, Chen M, Wu Q X. Adaptive tracking control for the conversion mode of tilt-rotor aircraft with switched fuzzy modeling. International Journal of Fuzzy Systems, 2024, 26(4): 1203−1214

    Li W, Shi S, Chen M, Wu Q X. Adaptive tracking control for the conversion mode of tilt-rotor aircraft with switched fuzzy modeling. International Journal of Fuzzy Systems, 2024, 26(4): 1203−1214
    [7] Comer A M, Chakraborty I. Full envelope flight control system design and optimization for a tilt-wing aircraft. Journal of the American Helicopter Society, 2024, 69(3): 1−18

    Comer A M, Chakraborty I. Full envelope flight control system design and optimization for a tilt-wing aircraft. Journal of the American Helicopter Society, 2024, 69(3): 1−18
    [8] Bauersfeld L, Spannagl L, Ducard G J J, Onder C H. MPC flight control for a tilt-rotor VTOL aircraft. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2395−2409

    Bauersfeld L, Spannagl L, Ducard G J J, Onder C H. MPC flight control for a tilt-rotor VTOL aircraft. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2395−2409
    [9] 朱斌, 陈庆伟. 垂直/短距起降飞机的轨迹跟踪控制器设计. 自动化学报, 2019, 45(6): 1166−1176

    Zhu Bin, Chen Qing-Wei. Trajectory tracking controller design of vertical or short takeoff and landing aircraft. Acta Automatica Sinica, 2019, 45(6): 1166−1176
    [10] Lv Z Y, Zhao Q, Sun X M, Wu Y H. Finite-time control design for a coaxial tilt-rotor UAV. IEEE Transactions on Industrial Electronics, 2024, 71(12): 16132−16142

    Lv Z Y, Zhao Q, Sun X M, Wu Y H. Finite-time control design for a coaxial tilt-rotor UAV. IEEE Transactions on Industrial Electronics, 2024, 71(12): 16132−16142
    [11] Panza S, Lovera M, Sato M, Muraoka K. Structured μ-synthesis of robust attitude control laws for quad-tilt-wing unmanned aerial vehicle. Journal of Guidance, Control, and Dynamics, 2020, 43(12): 2258−2274

    Panza S, Lovera M, Sato M, Muraoka K. Structured μ-synthesis of robust attitude control laws for quad-tilt-wing unmanned aerial vehicle. Journal of Guidance, Control, and Dynamics, 2020, 43(12): 2258−2274
    [12] Yu Z L, Zhang J J, Wang X Y. Thrust vectoring control of a novel tilt-rotor UAV based on backstepping sliding model method. Sensors, 2023, 23(2): Article No. 574

    Yu Z L, Zhang J J, Wang X Y. Thrust vectoring control of a novel tilt-rotor UAV based on backstepping sliding model method. Sensors, 2023, 23(2): Article No. 574
    [13] 刘双喜, 林泽淮, 刘伟, 闫斌斌, 黄伟. 基于INDI的倾转旋翼无人机过渡模式控制方案. 航空学报, 2024, 45(17): 236−250

    Liu Shuang-Xi, Lin Ze-Huai, Liu Wei, Yan Bin-Bin, Huang Wei. Research on transition mode control scheme of tilt rotor UAV based on INDI. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 236−250
    [14] Zhong J Y, Wang C, Zhang H. Transition control of a tail-sitter unmanned aerial vehicle with L1 neural network adaptive control. Chinese Journal of Aeronautics, 2023, 36(7): 460−475

    Zhong J Y, Wang C, Zhang H. Transition control of a tail-sitter unmanned aerial vehicle with L1 neural network adaptive control. Chinese Journal of Aeronautics, 2023, 36(7): 460−475
    [15] Zhang D, Wei B. A review on model reference adaptive control of robotic manipulators. Annual Reviews in Control, 2017, 43: 188−198

    Zhang D, Wei B. A review on model reference adaptive control of robotic manipulators. Annual Reviews in Control, 2017, 43: 188−198
    [16] Hou Z S, Xiong S S. On model-free adaptive control and its stability analysis. IEEE Transactions on Automatic Control, 2019, 64(11): 4555−4569

    Hou Z S, Xiong S S. On model-free adaptive control and its stability analysis. IEEE Transactions on Automatic Control, 2019, 64(11): 4555−4569
    [17] Anderson R B, Marshall J A, L'Afflitto A. Constrained robust model reference adaptive control of a tilt-rotor quadcopter pulling an unmodeled cart. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 39−54

    Anderson R B, Marshall J A, L'Afflitto A. Constrained robust model reference adaptive control of a tilt-rotor quadcopter pulling an unmodeled cart. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 39−54
    [18] Liu N J, Cai Z H, Zhao J, Wang Y X. Predictor-based model reference adaptive roll and yaw control of a quad-tiltrotor UAV. Chinese Journal of Aeronautics, 2020, 33(1): 282−295

    Liu N J, Cai Z H, Zhao J, Wang Y X. Predictor-based model reference adaptive roll and yaw control of a quad-tiltrotor UAV. Chinese Journal of Aeronautics, 2020, 33(1): 282−295
    [19] Liu Y, Li H Y, Lu R Q, Zuo Z Y, Li X D. An overview of finite/fixed-time control and its application in engineering systems. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2106−2120

    Liu Y, Li H Y, Lu R Q, Zuo Z Y, Li X D. An overview of finite/fixed-time control and its application in engineering systems. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2106−2120
    [20] Sun Z Y, Shao Y, Chen C C. Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica, 2019, 106: 339−348

    Sun Z Y, Shao Y, Chen C C. Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica, 2019, 106: 339−348
    [21] Song Y D, Ye H F, Lewis F L. Prescribed-time control and its latest developments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 4102−4116

    Song Y D, Ye H F, Lewis F L. Prescribed-time control and its latest developments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 4102−4116
    [22] Bhat S P, Bernstein D S. Lyapunov analysis of finite-time differential equations. In: Proceedings of the American Control Conference (ACC). Seattle, USA: IEEE, 1995. 1831−1832

    Bhat S P, Bernstein D S. Lyapunov analysis of finite-time differential equations. In: Proceedings of the American Control Conference (ACC). Seattle, USA: IEEE, 1995. 1831−1832
    [23] Bhat S P, Bernstein D S. Finite-time stability of homogeneous systems. In: Proceedings of the American Control Conference (ACC). Albuquerque, USA: IEEE, 1997. 2513−2514

    Bhat S P, Bernstein D S. Finite-time stability of homogeneous systems. In: Proceedings of the American Control Conference (ACC). Albuquerque, USA: IEEE, 1997. 2513−2514
    [24] Polyakov A, Fridman L. Stability notions and Lyapunov functions for sliding mode control systems. Journal of the Franklin Institute, 2014, 351(4): 1831−1865

    Polyakov A, Fridman L. Stability notions and Lyapunov functions for sliding mode control systems. Journal of the Franklin Institute, 2014, 351(4): 1831−1865
    [25] Andrieu V, Praly L, Astolfi A. Homogeneous approximation, recursive observer design, and output feedback. SIAM Journal on Control and Optimization, 2008, 47(4): 1814−1850

    Andrieu V, Praly L, Astolfi A. Homogeneous approximation, recursive observer design, and output feedback. SIAM Journal on Control and Optimization, 2008, 47(4): 1814−1850
    [26] Sun H B, Hou L L, Zong G D, Yu X H. Fixed-time attitude tracking control for spacecraft with input quantization. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 124−134

    Sun H B, Hou L L, Zong G D, Yu X H. Fixed-time attitude tracking control for spacecraft with input quantization. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 124−134
    [27] Wang J H, Alattas K A, Bouteraa Y, Mofid O, Mobayen S. Adaptive finite-time backstepping control tracker for quadrotor UAV with model uncertainty and external disturbance. Aerospace Science and Technology, 2023, 133: Article No. 108088

    Wang J H, Alattas K A, Bouteraa Y, Mofid O, Mobayen S. Adaptive finite-time backstepping control tracker for quadrotor UAV with model uncertainty and external disturbance. Aerospace Science and Technology, 2023, 133: Article No. 108088
    [28] Xiao J, Zeng Z G, Wen S P, Wu A L, Wang L M. A unified framework design for finite-time and fixed-time synchronization of discontinuous neural networks. IEEE Transactions on Cybernetics, 2021, 51(6): 3004−3016

    Xiao J, Zeng Z G, Wen S P, Wu A L, Wang L M. A unified framework design for finite-time and fixed-time synchronization of discontinuous neural networks. IEEE Transactions on Cybernetics, 2021, 51(6): 3004−3016
    [29] Wang C Y, Dong W, Wang J N, Shan J Y, Xin M. Guidance law design with fixed-time convergent error dynamics. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1389−1398

    Wang C Y, Dong W, Wang J N, Shan J Y, Xin M. Guidance law design with fixed-time convergent error dynamics. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1389−1398
    [30] Cheng W L, Zhang K, Jiang B. Fixed-time and prescribed-time fault-tolerant optimal tracking control for heterogeneous multiagent systems. IEEE Transactions on Automation Science and Engineering, 2024, 21(4): 7275−7286

    Cheng W L, Zhang K, Jiang B. Fixed-time and prescribed-time fault-tolerant optimal tracking control for heterogeneous multiagent systems. IEEE Transactions on Automation Science and Engineering, 2024, 21(4): 7275−7286
    [31] Zhu J H, Yang Y J, Wang X Y, Yuan X M, Yang X. Attitude control of a novel tilt-wing UAV in hovering flight. Science China Information Sciences, 2023, 66(5): Article No. 154201

    Zhu J H, Yang Y J, Wang X Y, Yuan X M, Yang X. Attitude control of a novel tilt-wing UAV in hovering flight. Science China Information Sciences, 2023, 66(5): Article No. 154201
    [32] Ding S H, Mei K Q, Yu X H. Adaptive second-order sliding mode control: A Lyapunov approach. IEEE Transactions on Automatic Control, 2022, 67(10): 5392−5399

    Ding S H, Mei K Q, Yu X H. Adaptive second-order sliding mode control: A Lyapunov approach. IEEE Transactions on Automatic Control, 2022, 67(10): 5392−5399
    [33] Abdul Ghaffar A F, Richardson T, Greatwood C. A combined model reference adaptive control law for multirotor UAVs. IET Control Theory & Applications, 2021, 15(11): 1474−1487

    Abdul Ghaffar A F, Richardson T, Greatwood C. A combined model reference adaptive control law for multirotor UAVs. IET Control Theory & Applications, 2021, 15(11): 1474−1487
    [34] Marshall J A, Carter G I, L'Afflitto A. Model reference adaptive control for prescribed performance and longitudinal control of a tail-sitter UAV. In: Proceedings of the AIAA SCITECH 2022 Forum. San Diego, USA: AIAA, 2022. Article No. 1380

    Marshall J A, Carter G I, L'Afflitto A. Model reference adaptive control for prescribed performance and longitudinal control of a tail-sitter UAV. In: Proceedings of the AIAA SCITECH 2022 Forum. San Diego, USA: AIAA, 2022. Article No. 1380
    [35] Basin M, Yu P, Shtessel Y. Finite- and fixed-time differentiators utilising HOSM techniques. IET Control Theory & Applications, 2017, 11(8): 1144−1152

    Basin M, Yu P, Shtessel Y. Finite- and fixed-time differentiators utilising HOSM techniques. IET Control Theory & Applications, 2017, 11(8): 1144−1152
    [36] Venkataraman S T, Gulati S. Control of nonlinear systems using terminal sliding modes. Journal of Dynamic Systems, Measurement, and Control, 1993, 115(3): 554−560

    Venkataraman S T, Gulati S. Control of nonlinear systems using terminal sliding modes. Journal of Dynamic Systems, Measurement, and Control, 1993, 115(3): 554−560
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 录用日期:  2025-01-17
  • 网络出版日期:  2025-02-26

目录

    /

    返回文章
    返回