2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于覆盖理论的高速强机动目标集群协同围捕

江涌 王蒙一 王林波

江涌, 王蒙一, 王林波. 基于覆盖理论的高速强机动目标集群协同围捕. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240606
引用本文: 江涌, 王蒙一, 王林波. 基于覆盖理论的高速强机动目标集群协同围捕. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240606
Jiang Yong, Wang Meng-Yi, Wang Lin-Bo. Coverage-based cluster cooperative encirclement of high-speed and highly maneuverable targets. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240606
Citation: Jiang Yong, Wang Meng-Yi, Wang Lin-Bo. Coverage-based cluster cooperative encirclement of high-speed and highly maneuverable targets. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240606

基于覆盖理论的高速强机动目标集群协同围捕

doi: 10.16383/j.aas.c240606 cstr: 32138.14.j.aas.c240606
详细信息
    作者简介:

    江涌:研究员. 主要研究方向为飞行器设计与导航、制导与控制. E-mail: riverflowhtey@163.com

    王蒙一:研究员. 长期从事无人飞行器导航、制导与控制, 群体智能协同控制等相关技术研究. 本文共同一作. E-mail: 22873378@qq.com

    王林波:工程师. 2019年毕业于北京航空航天大学, 获控制科学与工程学士学位. 2024年获得中国航天科工集团第二研究院控制科学与工程的工学博士学位. 主要研究方向为协同围捕制导与群体协同对抗等. 本文通信作者. E-mail: wanglinbo123@buaa.edu.cn

Coverage-based Cluster Cooperative Encirclement of High-speed and Highly Maneuverable Targets

More Information
    Author Bio:

    JIANG Yong Researcher. His research interest includes aircraft design and navigation, guidance and control

    WANG Meng-Yi Researcher. He has long been engaged in the research of unmanned aerial vehicle navigation, guidance and control, swarm intelligent cooperative control and other related technologies. He is a co-author of this article

    WANG Lin-Bo Engineer. He received the B.E. degree in control science and engineering from Beihang University, Beijing, China, in 2019. He received the Ph.D. in the Beijing Institute of Electronic System Engineering, Beijing, China. His research interest includes cooperative guidance and group collaborative confrontation. Corresponding author of this paper

  • 摘要: 集群协同围捕技术在空天防御领域逐渐扮演愈加关键的角色, 本文基于碰撞平面等效覆盖方法, 在三维空间内基于非线性动态模型提出了一种新的高速强机动目标的覆盖策略. 首先基于三维圆锥体可达域提出新的碰撞平面覆盖等效方法, 阐释了加速度覆盖和位置覆盖的区别与联系, 并从几何角度分析了交会角对完全覆盖的影响. 其次, 考虑实际环境下飞行器过载弱于目标的情况, 基于偏置比例导引设计了协同制导律, 能够实现对目标加速度的覆盖, 并基于覆盖率和零控脱靶量提出了分段覆盖动态调节与快速收敛策略, 使得多飞行器在前期能够保持高覆盖率, 后期能够降低整体的脱靶量, 实现围捕覆盖的优势. 最后, 结合数值仿真进行了可行性验证.
  • 图  1  三维空间内飞行器可达域

    Fig.  1  The reachable domain of an interceptor in three-dimensional space

    图  2  碰撞平面

    Fig.  2  Collision plane

    图  3  冗余覆盖策略

    Fig.  3  Redundant coverage strategy

    图  4  交会角影响

    Fig.  4  Influence of miss angle

    图  5  协同围捕

    Fig.  5  Cooperative interception

    图  6  $X-Y$平面的相对位置

    Fig.  6  $X-Y$ plane relative position

    图  7  $X-Z$平面的相对位置

    Fig.  7  $X-Z$ plane relative position

    图  8  碰撞平面内的覆盖比例

    Fig.  8  Coverage ratio within the collision plane

    图  9  对高速强机动目标最大正向机动的围捕覆盖

    Fig.  9  Encirclement for positive direction maneuvering the target

    图  10  对高速强机动目标最大正向机动的围捕覆盖

    Fig.  10  Encirclement for positive direction maneuvering the target

    图  11  对高速强机动目标最大负向机动的围捕覆盖

    Fig.  11  Encirclement for negative direction maneuvering the target

    图  12  脱靶量关于目标机动的分布

    Fig.  12  Distribution of miss distance with respect to target maneuvering

    图  13  目标以随机时间切换的方波机动过载

    Fig.  13  Overload of target maneuvering with random time-switched square wave pattern

    图  14  对目标随机时间方波机动的围捕覆盖

    Fig.  14  Encirclement for random square wave maneuvering the target

    表  1  不同过载比下的数量选取

    Table  1  Initial osculating orbit elements

    $\mu$$[\sqrt{3}/2,\; 1)$$[\sqrt{2}/2,\; \sqrt{3}/2)$$[0. 609,\; \sqrt{2}/2)$[0. 555, 0. 609)[0. 5, 0. 555)
    $n$34567
    下载: 导出CSV

    表  2  初始的制导参数

    Table  2  Initial guidance parameters

    制导参数 ${{{M}}_{{{1}}}}$ ${{{M}}_{{{2}}}}$ ${{{M}}_{{{3}}}}$ ${{{M}}_{{{4}}}}$ ${{{M}}_{{{5}}}}$ ${{{M}}_{{{6}}}}$
    $B_{y}$ 44.49338 0 44.4938 28.1938 28.1938 0
    $B_{z}$ 14.7910 46.5865 14.7910 38.0842 38.0842 0
    $\eta_{My,\; 0}\; ({}^\circ)$ 9.4049 0 9.4049 5.8450 5.8450 0
    $\eta_{Mz,\; 0}\; ({}^\circ)$ 3.0309 9.8796 3.0309 7.9790 7.9790 0
    下载: 导出CSV

    表  3  目标以最大加速度机动的情况下的脱靶量

    Table  3  Miss distance under target maximum acceleration maneuver

    机动形式 调节策略 有效拦截目标的飞行器 对应脱靶量
    最大正向机动预设调节$M_3$1.18 m
    动态调节$M_2,\; M_3$0. 95 m 1.12 m
    最大负向机动预设调节$M_5$1.35 m
    动态调节$M_5$1.22 m
    下载: 导出CSV

    表  4  目标以随机方波机动的情况下的脱靶量

    Table  4  Miss distance under target maneuvering with random square wave pattern

    机动形式 调节策略 有效拦截目标的飞行器 对应脱靶量
    随机方
    波机动
    预设调节 $M_6$ 0.85 m
    动态调节 $M_2,\; M_3,\; M_6$ 0.62 m 0.73 m 0.80 m
    下载: 导出CSV
  • [1] Salmon D M, Heine W. Reachable sets analysis-an efficient technique for performing missile/sensor tradeoff studies. AIAA Journal, 1973, 11(7): 927−931 doi: 10.2514/3.50543
    [2] Robb M, White B A, Tsourdos A, Rulloda D. Reachability guidance: a novel concept to improve mid-course guidance. In: Proceedings of the 2005 American Control Conference. Portland, USA: IEEE, 2005. 339−345
    [3] Robb M, White B, Tsourdos A. Earliest intercept line guidance: a novel concept for improving mid-course guidance in area air defence. In: Proceedings of 2005 AIAA guidance, navigation, and control conference and exhibit. San Francisco, USA: AIAA, 2005. 5971
    [4] Mizukami K, Eguchi K. A geometrical approach to problems of pursuit-evasion games. Journal of the Franklin Institute, 1977, 303(4): 371−384 doi: 10.1016/0016-0032(77)90118-1
    [5] Chung C F, Furukawa T, Goktogan A H. Coordinated control for capturing a highly maneuverable evader using forward reachable sets. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, USA: IEEE, 2006. 1336−1341
    [6] Chung C F, Furukawa T. A reachability-based strategy for the time-optimal control of autonomous pursuers. Engineering Optimization, 2008, 40(1): 67−93 doi: 10.1080/03052150701593133
    [7] 于大腾, 王华, 李林森, 等. 能量约束下的动能拦截弹逆轨拦截攻击区建模. 宇航学报, 2017, 38(07): 704−713 doi: 10.3873/j.issn.1000-1328.2017.07.005

    Yu Da-Teng, Wang Hua, Li Lin-Sen. Attack Area Modeling of Kinetic Kill Vehicle Head-on Interception with Energy Constraint. Journal of Astronautics, 2017, 38(07): 704−713 doi: 10.3873/j.issn.1000-1328.2017.07.005
    [8] Dubins L E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of mathematics, 1957, 79(3): 497−516 doi: 10.2307/2372560
    [9] Meyer Y, Isaiah P, Shima T. On Dubins paths to intercept a moving target. Automatica, 2015, 53: 256−263 doi: 10.1016/j.automatica.2014.12.039
    [10] Yan X, Kuang M, Zhu J, Yuan X. Reachability-based cooperative strategy for intercepting a highly maneuvering target using inferior missiles. Aerospace Science and Technology, 2020, 106: 106057 doi: 10.1016/j.ast.2020.106057
    [11] Chen W, Shao L, Lei H. On-line trajectory generation of midcourse cooperative guidance for multiple interceptors. Journal of Systems Engineering and Electronics, 2022, 33(1): 197−209 doi: 10.23919/JSEE.2022.000020
    [12] Isaacs R. Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization[M]. Massachusetts: Courier Corporation, 1999: 10−15
    [13] Ramana M V, Kothari M. Pursuit strategy to capture high-speed evaders using multiple pursuers. Journal of Guidance, Control, and Dynamics, 2017, 40(1): 139−149 doi: 10.2514/1.G000584
    [14] 符小卫, 陈子浩. 基于一致性协议的多无人机协同围捕控制方法. 系统工程与电子技术, 2021, 43(9): 2501−2507 doi: 10.12305/j.issn.1001-506X.2021.09.17

    Fu Xiao-Wei, Chen Zi-Hao. Cooperative capture control method for multi-UAV based on consensus protocol. Systems Engineering and Electronics, 2021, 43(9): 2501−2507 doi: 10.12305/j.issn.1001-506X.2021.09.17
    [15] Liang L, Deng F, Peng Z, Li X X, Zha W Z. A differential game for cooperative target defense. Automatica, 2019, 102: 58−71 doi: 10.1016/j.automatica.2018.12.034
    [16] Su W S, Shin H S, Chen L, Tsourdos A. Cooperative interception strategy for multiple inferior missiles against one highly maneuvering target. Aerospace Science and Technology, 2018, 80: 91−100 doi: 10.1016/j.ast.2018.06.026
    [17] Su W S, Li K B, Chen L. Coverage-based three-dimensional cooperative guidance strategy against highly maneuvering target. Aerospace Science and Technology, 2019, 85: 556−566 doi: 10.1016/j.ast.2018.08.023
    [18] 肖惟, 于江龙, 董希旺, 李清东, 任章. 过载约束下的大机动目标协同拦截. 航空学报, 2020, 41(S1): 184−194 doi: 10.7527/S1000-6893.2019.23777

    Xiao Wei, Yu Jiang-Long, Dong Xi-Wang, Li Qing-Dong, Ren Zhang. Cooperative interception against highly maneuvering target with acceleration constraints. Acta Aeronautica ET Astronautica Sinica, 2020, 41(S1): 184−194 doi: 10.7527/S1000-6893.2019.23777
    [19] Chen Z Y, Yu J L, Dong X W, Ren Z. Three-dimensional cooperative guidance strategy and guidance law for intercepting highly maneuvering target. Chinese Journal of Aeronautics, 2021, 34(5): 485−495 doi: 10.1016/j.cja.2020.12.014
    [20] Song B, Yu J Q, Chen X, Niu K, Li Z Y. A Multi-missile Coverage Interception Strategy. In: Aerospace Mechatronics and Control Technology: Selected Contributions from 2021 7th Asia Conference on Mechanical Engineering and Aerospace Engineering. Singapore: Springer Nature 2022: 105−118
    [21] Zhang B L, Zhou D, Li J L, Yao Y H. Coverage-based cooperative guidance strategy by controlling flight path angle. Journal of Guidance, Control, and Dynamics, 2022, 45(5): 972−981 doi: 10.2514/1.G006504
    [22] Liu S X, Yan B B, Zhang T, Zhang X, Yan J. Coverage-based cooperative guidance law for intercepting hypersonic vehicles with overload constraint. Aerospace Science and Technology, 2022, 126: 107651 doi: 10.1016/j.ast.2022.107651
    [23] Liu S, Yan B B, Zhang T, Zhang X, Yan J. Three-dimensional coverage-based cooperative guidance law with overload constraints to intercept a hypersonic vehicle. Aerospace Science and Technology, 2022, 130: 107908 doi: 10.1016/j.ast.2022.107908
    [24] Zhai C, He F H, Hong Y G, eWang L, Yao Y. Coverage-based interception algorithm of multiple interceptors against the target involving decoys. Journal of Guidance, Control, and Dynamics, 2016, 39(7): 1647−1653 doi: 10.2514/1.G001535
    [25] Zhai C, Zhang H T, Xiao G X. Coverage-Based Cooperative Interception Against Supersonic Flight Vehicles. Cooperative Coverage Control of Multi-Agent Systems and its Applications, 202195−110
    [26] 杜永浩, 邢立宁, 蔡昭权. 无人飞行器集群智能调度技术综述. 自动化学报, 2020, 46(2): 222−241

    Du Yong-Hao, Xing Li-Ning, Cao Zhao-Quan. Survey on Intelligent Scheduling Technologies for Unmanned Flying Craft Clusters. Acta Automatica Sinica, 2020, 46(2): 222−241
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-30
  • 录用日期:  2025-03-02
  • 网络出版日期:  2025-04-08

目录

    /

    返回文章
    返回