2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人飞行器集群自主控制: 预设性能驱动的安全编队控制

方浩 赵欣悦 陈杰

方浩, 赵欣悦, 陈杰. 无人飞行器集群自主控制: 预设性能驱动的安全编队控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240603
引用本文: 方浩, 赵欣悦, 陈杰. 无人飞行器集群自主控制: 预设性能驱动的安全编队控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240603
Fang Hao, Zhao Xin-Yue, Chen Jie. Autonomous control of unmanned aerial vehicle swarms: prescribed performance driven safety formation control. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240603
Citation: Fang Hao, Zhao Xin-Yue, Chen Jie. Autonomous control of unmanned aerial vehicle swarms: prescribed performance driven safety formation control. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240603

无人飞行器集群自主控制: 预设性能驱动的安全编队控制

doi: 10.16383/j.aas.c240603 cstr: 32138.14.j.aas.c240603
基金项目: 国家重点研发计划(2022YFA1004703, 2022YFB4702000), 国家自然科学基金(62373048, 62133002, U1913602, 62088101), 上海市重大科技专项(2021SHZDZX0100)资助
详细信息
    作者简介:

    方浩:北京理工大学自动化学院教授. 1995年获西安理工大学学士学位, 1998年和2002年分别获西安交通大学硕士学位和博士学位. 主要研究方向为全地形移动机器人、机器人控制和多智能体系统. 本文通信作者. E-mail: fangh@bit.edu.cn

    赵欣悦:北京理工大学自动化学院博士研究生. 2019年获得沈阳理工大学自动化专业学士学位. 主要研究方向为安全控制, 多智能体系统. E-mail: xinyue.zhao@bit.edu.cn

    陈杰:中国工程院院士, 北京理工大学自动化学院教授, 同济大学教授, 自主智能无人系统全国重点实验室教授. 1986年、1996年和2001年分别获得北京理工大学控制理论与应用专业学士学位、硕士学位和博士学位. 主要研究方向为复杂系统、多智能体系统、多目标优化与决策和约束非线性控制. E-mail: chenjie@bit.edu.cn

Autonomous Control of Unmanned Aerial Vehicle Swarms: Prescribed Performance Driven Safety Formation Control

Funds: Supported by National Key Research and Development Program of China (2022YFA1004703, 2022YFB4702000), National Natural Science Foundation of China (62373048, 62133002, U1913602, 62088101), and Shanghai Major Science and Technology Special Project (2021SHZDZX0100)
More Information
    Author Bio:

    FANG Hao Professor at School of Automation, Beijing Institute of Technology. He received his B.S. degree from Xi'an University of Technology in 1995, and the M.S. and Ph.D. degrees from Xi'an Jiaotong University in 1998 and 2002, respectively. His research interests include all-terrain mobile robots, robotic control, and multi-agent systems. Corresponding author of this paper

    ZHAO Xin-Yue Ph.D. candidate at School of Automation, Beijing Institute of Technology. He received his B.S. degree in automation from Shenyang Ligong University in 2019. His research interest covers safety control and multi-agent system

    CHEN Jie Academician of Chinese Academy of Engineering, professor at Tongji University, School of Automation, Beijing Institute of Technology, and National Key Laboratory of Autonomous Intelligent Unmanned Systems. He received his B.Sc., M.Sc., and Ph.D. degrees in control science and application from Beijing Institute of Technology in 1986, 1996, and 2001, respectively. His research interests include complex systems, multi-agent system, multi-objective optimization and decision, and constrained nonlinear control

  • 摘要: 针对障碍环境下多无人机编队跟踪问题, 提出了一种兼顾编队跟踪性能与安全的控制框架. 在该框架中, 首先利用性能边界可调的预设性能控制 (Prescribed performance control, PPC) 方法生成期望控制信号, 使无人机跟踪虚拟领导者的期望轨迹, 跟踪过程中满足瞬态与稳态误差约束. 进一步, 基于控制障碍函数 (Control barrier function, CBF) 描述无人机的安全状态集合并建立二次规划问题, 利用 Karush-Kuhn-Tucker (KKT) 条件得到最小干预安全控制器的闭式解. 最后, 利用安全控制的闭式解构造辅助系统, 实现性能函数的自适应更新. 理论分析表明, 该算法能够在编队跟踪与安全性冲突条件下确保系统安全, 在不发生冲突时实现性能约束下的编队跟踪. 仿真结果验证了提出算法的有效性.
    1)  11[29]针对系统(4), 关于其状态的连续可微标量函数$ b({\boldsymbol{x}}): {\bf{R}}^{\bf{n}}\to{\bf{R}} $的相对度指的是沿着系统动力学求导直至出现$ {\boldsymbol{u}} $时的求导次数
  • 图  1  队形定义与编队跟踪示意图

    Fig.  1  Formation definition and formation tracking diagram

    图  2  预设性能安全控制框架

    Fig.  2  Prescribed performance safety control framework

    图  3  编队跟踪轨迹

    Fig.  3  Formation tracking trajectory

    图  4  编队跟踪误差曲线

    Fig.  4  Trajectory of formation tracking error

    图  5  与障碍物之间距离的变化

    Fig.  5  Evolution of distance between UAV and obstacles

  • [1] Alonso-Mora J, Baker S, Rus D. Multi-robot formation control and object transport in dynamic environments via constrained optimization. The International Journal of Robotics Research, 2017, 36(9): 1000−1021 doi: 10.1177/0278364917719333
    [2] Luo Q Y, Luan T H, Shi W S, Fan P Z. Edge computing enabled energy-efficient multi-UAV cooperative target search. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7757−7771 doi: 10.1109/TVT.2023.3238040
    [3] Funada R, Santos M, Maniwa R, Yamauchi J, Fujita M, Sampei M, et al. Distributed coverage hole prevention for visual environmental monitoring with quadcopters via nonsmooth control barrier functions. IEEE Transactions on Robotics, 2024, 40: 1546−1565 doi: 10.1109/TRO.2023.3347132
    [4] Liu Y F, Liu J J, He Z P, Li Z H, Zhang Q C, Ding Z T. A survey of multi-agent systems on distributed formation control. Unmanned Systems, 2024, 12(5): 913−926 doi: 10.1142/S2301385024500274
    [5] Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control, 2008, 53(9): 2090−2099 doi: 10.1109/TAC.2008.929402
    [6] Chen F, Dimarogonas D V. Leader-follower formation control with prescribed performance guarantees. IEEE Transactions on Control of Network Systems, 2021, 8(1): 450−461 doi: 10.1109/TCNS.2020.3029155
    [7] An B H, Wang B, Fan H J, Liu L, Hu H, Wang Y J. Fully distributed prescribed performance formation control for UAVs with unknown maneuver of leader. Aerospace Science and Technology, 2022, 130: Article No. 107886 doi: 10.1016/j.ast.2022.107886
    [8] Li B, Gong W Q, Yang Y S, Xiao B. Distributed fixed-time leader-following formation control for multiquadrotors with prescribed performance and collision avoidance. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 7281−7294
    [9] Mehdifar F, Bechlioulis C P, Hashemzadeh F, Baradarannia M. Prescribed performance distance-based formation control of Multi-Agent Systems. Automatica, 2020, 119: Article No. 109086 doi: 10.1016/j.automatica.2020.109086
    [10] Liu B J, Li A J, Guo Y, Wang C Q. Adaptive distributed finite-time formation control for multi-UAVs under input saturation without collisions. Aerospace Science and Technology, 2022, 120: Article No. 107252 doi: 10.1016/j.ast.2021.107252
    [11] Miao Z Q, Zhong H, Lin J, Wang Y N, Chen Y J, Fierro R. Vision-based formation control of mobile robots with FOV constraints and unknown feature depth. IEEE Transactions on Control Systems Technology, 2021, 29(5): 2231−2238 doi: 10.1109/TCST.2020.3023415
    [12] Zhao K, Song Y D, Chen C L P, Chen L. Control of nonlinear systems under dynamic constraints: A unified barrier function-based approach. Automatica, 2020, 119: Article No. 109102 doi: 10.1016/j.automatica.2020.109102
    [13] Zhao X Y, Tian B L, You M, Ma L. Adaptive distributed sliding mode control for multiple unmanned aerial vehicles with prescribed performance. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11480−11490 doi: 10.1109/TVT.2022.3192350
    [14] Huang Y, Meng Z Y, Dimarogonas D V. Prescribed performance formation control for second-order multi-agent systems with connectivity and collision constraints. Automatica, 2024, 160: Article No. 111412 doi: 10.1016/j.automatica.2023.111412
    [15] Ames A D, Xu X R, Grizzle J W, Tabuada P. Control barrier function based quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 2017, 62(8): 3861−3876 doi: 10.1109/TAC.2016.2638961
    [16] Ames A D, Coogan S, Egerstedt M, Notomista G, Sreenath K, Tabuada P. Control barrier functions: Theory and applications. In: Proceedings of the 18th European Control Conference (ECC). Naples, Italy: IEEE, 2019. 3420−3431
    [17] 陈杰, 吕梓亮, 黄鑫源, 洪奕光. 非线性系统的安全分析与控制: 障碍函数方法. 自动化学报, 2023, 49(3): 567−579

    Chen Jie, Lv Zi-Liang, Huang Xin-Yuan, Hong Yi-Guang. Safety analysis and safety-critical control of nonlinear systems: Barrier function approach. Acta Automatica Sinica, 2023, 49(3): 567−579
    [18] Guerrero-Bonilla L, Kumar V. Realization of γ-robust formations in the plane using control barrier functions. IEEE Control Systems Letters, 2020, 4(2): 343−348 doi: 10.1109/LCSYS.2019.2924460
    [19] Zhao X Y, Yang Q K, Liu Q, Yin Y H, Wei Y, Fang H. Minimally persistent graph generation and formation control for multi-robot systems under sensing constraints. Electronics, 2023, 12(2): Article No. 317 doi: 10.3390/electronics12020317
    [20] Fu J J, Wen G H, Yu X H, Wu Z G. Distributed formation navigation of constrained second-order multiagent systems with collision avoidance and connectivity maintenance. IEEE Transactions on Cybernetics, 2022, 52(4): 2149−2162 doi: 10.1109/TCYB.2020.3000264
    [21] Fu J J, Wen G H, Yu X H, Huang T W. Robust collision-avoidance formation navigation of velocity and input-constrained multirobot systems. IEEE Transactions on Cybernetics, 2024, 54(3): 1734−1746 doi: 10.1109/TCYB.2023.3248125
    [22] Fu J J, Wen G H, Yu X H. Safe consensus tracking with guaranteed full state and input constraints: A control barrier function-based approach. IEEE Transactions on Automatic Control, 2023, 68(12): 8075−8081 doi: 10.1109/TAC.2023.3283697
    [23] Pierpaoli P, Li A Q, Srinivasan M, Cai X Y, Coogan S, Egerstedt M. A sequential composition framework for coordinating multirobot behaviors. IEEE Transactions on Robotics, 2021, 37(3): 864−876 doi: 10.1109/TRO.2020.3036628
    [24] Dong Y, Wang X Y, Hong Y G. Safety critical control design for nonlinear system with tracking and safety objectives. Automatica, 2024, 159: Article No. 111365 doi: 10.1016/j.automatica.2023.111365
    [25] Wang P, Liang X L, Peng X H, Lu Y, Ge S S. Control barrier performance function-based cooperative formation with parallel dynamic event-triggering strategy. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(7): 4552−4564 doi: 10.1109/TSMC.2024.3385365
    [26] Yong K N, Chen M, Shi Y, Wu Q X. Flexible performance-based robust control for a class of nonlinear systems with input saturation. Automatica, 2020, 122: Article No. 109268 doi: 10.1016/j.automatica.2020.109268
    [27] Bu X W. Prescribed performance control approaches, applications and challenges: A comprehensive survey. Asian Journal of Control, 2023, 25(1): 241−261 doi: 10.1002/asjc.2765
    [28] Rabiee P, Hoagg J B. Composition of control barrier functions with differing relative degrees for safety under input constraints. In: Proceedings of the American Control Conference (ACC). Toronto, Canada: IEEE, 2024. 3692−3697
    [29] Xiao W, Belta C. Control barrier functions for systems with high relative degree. In: Proceedings of the 58th Conference on Decision and Control (CDC). Nice, France: IEEE, 2019. 474−479
    [30] Taylor A J, Ong P, Molnar T G, Ames A D. Safe backstepping with control barrier functions. In: Proceedings of the 61st Conference on Decision and Control (CDC). Cancun, Mexico: IEEE, 2022. 5775−5782
    [31] Cohen M H, Molnar T G, Ames A D. Safety-critical control for autonomous systems: Control barrier functions via reduced-order models. Annual Reviews in Control, 2024, 57: Article No. 100947 doi: 10.1016/j.arcontrol.2024.100947
    [32] Cohen M H, Ong P, Bahati G, Ames A D. Characterizing smooth safety filters via the implicit function theorem. IEEE Control Systems Letters, 2023, 7: 3890−3895 doi: 10.1109/LCSYS.2023.3341345
  • 加载中
计量
  • 文章访问数:  38
  • HTML全文浏览量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-30
  • 录用日期:  2024-12-13
  • 网络出版日期:  2025-02-12

目录

    /

    返回文章
    返回