2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SignBrain: 无线可穿戴脑电采集技术

孟庆桐 常东明 曹姗 胡若晨 蒋田仔 左年明

孟庆桐, 常东明, 曹姗, 胡若晨, 蒋田仔, 左年明. SignBrain: 无线可穿戴脑电采集技术. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240578
引用本文: 孟庆桐, 常东明, 曹姗, 胡若晨, 蒋田仔, 左年明. SignBrain: 无线可穿戴脑电采集技术. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240578
Meng Qing-Tong, Chang Dong-Ming, Cao Shan, Hu Ruo-Chen, Jiang Tian-Zi, Zuo Nian-Ming. Signbrain: wireless wearable eeg device. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240578
Citation: Meng Qing-Tong, Chang Dong-Ming, Cao Shan, Hu Ruo-Chen, Jiang Tian-Zi, Zuo Nian-Ming. Signbrain: wireless wearable eeg device. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240578

SignBrain: 无线可穿戴脑电采集技术

doi: 10.16383/j.aas.c240578 cstr: 32138.14.j.aas.c240578
详细信息
    作者简介:

    孟庆桐:中国科学院自动化研究所脑网络组研究中心工程师. 主要研究方向为脑信号检测和神经调控硬件系统研发.E-mail: qingtong.meng@ia.ac.cn

    常东明:中国科学院自动化研究所脑网络组研究中心工程师. 主要研究方向脑信号检测, 软件研发和脑电分析算法设计.Email: dongming.chang@ia.ac.cn

    曹姗:中国科学院自动化研究所脑网络组研究中心工程师. 主要研究方向为嵌入式系统, 脑电设备研发. E-mail: shan.cao@ia.ac.cn

    胡若晨:中国科学院自动化研究所助理研究员. 主要研究方向为视觉脑-机接口和脑电信号编解码算法. E-mail: ruochen.hu@ia.ac.cn

    蒋田仔:中国科学院自动化研究所脑网络组研究中心教授. 主要研究方向脑影像分析、脑网络组、数字孪生脑临床应用. E-mail: jiangtz@nlpr.ia.ac.cn

    左年明:中国科学院自动化研究所脑网络组研究中心教授. 主要研究方向可穿戴脑机接口应用. 本文通信作者.E-mail: nmzuo@nlpr.ia.ac.cn

SignBrain: Wireless Wearable EEG Device

More Information
    Author Bio:

    MENG Qing-Tong Engineer at the Brainnetome Center, Institute of Automation, Chinese Academy of Sciences. His research interest covers brain signals probing and neuromodulation hardware development

    CHANG Dong-Ming Engineer at the Brainnetome Center , Institute of Automation, Chinese Academy of Sciences. His research interest covers brain signals probing, software development and algorithms design for EEG analysis

    CAO SHAN Engineer at the Brainnetome Center, Institute of Automation, Chinese Academy of Sciences. Her research interest covers embedded systems and EEG device development

    HU Ruo-Chen Assistant Professor at the Brainnetome Center , Institute of Automation, Chinese Academy of Sciences. His research interest covers visual brain-computer interface and EEG encoding and decoding algorithm

    JIANG Tian-Zi Professor at the Brainnetome Center , Institute of Automation, Chinese Academy of Sciences. His research interest Brain imaging analysis, brainetome, digital twin brain and clinical applications

    ZUO Nian-Ming Professor at the Brainnetome Center, Institute of Automation, Chinese Academy of Sciences. His research interest wearable bidirectional brain-computer interface and its applications

  • 摘要: 介绍一种自主研发的无线可穿戴非侵入式脑电信号采集技术: SignBrain (型号P). SignBrain设备为爪形结构, 设计符合国际10-20导联标准, 具有18个盐水电极, 配合万向活动抱紧部件, 始终保持电极与头皮紧密接触, 弥补了头型较大、发量较多佩戴使用的问题. 设备不用打导电膏实现了“即戴即用”的使用方式, 采集的脑电信号通过低功耗蓝牙实时传输至软件系统, 系统支持在线阻抗检测、Marker同步记录等功能. 同时研发了与设备配套的PC端软件、应用接口以及移动终端 (手机、平板电脑等) 软件, 能在线、离线、远程查看数据. SignBrain技术已在临床医院及相关单位完成了小批量的试用, 通过脑机交互领域中闭眼想象写字实验、高频视觉诱发实验来验证设备的可靠性及稳定性. 关于设备的开发和应用讨论请访问网站: www.SignBrain.cn.
  • 图  1  SignBrain设备性能检测报告

    Fig.  1  SignBrain device performance test report

    图  2  设备主干结构

    Fig.  2  Device backbone structure

    图  3  16通道SignBrain设备导联位置排布图

    Fig.  3  Layout of the electrodes for 16-channel SignBrain device

    图  4  设备爪形结构

    Fig.  4  Claw structure of the device

    图  5  万向轴抱紧件

    Fig.  5  Universal shaft

    图  6  短中长三种海绵规格展示

    Fig.  6  Three types of sponge: short, medium and long

    图  7  SignBrain设备效果图

    Fig.  7  SignBrain device effect picture

    图  8  信号流程图

    Fig.  8  Signal flow illustration

    图  9  SignBrain与Emotiv的频谱图对比

    Fig.  9  Spectrogram comparison between SignBrain and Emotiv

    图  10  SignBrain与BP的频谱图对比

    Fig.  10  Spectrogram comparison between SignBrain and BP

    图  11  实际应用测试图

    Fig.  11  Practical application test

    图  12  5名男性被试

    Fig.  12  5 male participants

    图  13  5名女性被试

    Fig.  13  5 female participants

    图  14  不同性别各通道阻抗均值比较

    Fig.  14  Comparison of the average impedance of each channel for different genders

    图  15  想象写字范式图

    Fig.  15  Experiment for imaginary writing recognition

    图  16  26字母分类测试结果

    Fig.  16  26 letter recognition results

    图  17  被试使用设备想象字母

    Fig.  17  Subjects used the device to imagine letters writing

    图  18  采用BP设备与SignBrain设备想象写字实验模型训练结果

    Fig.  18  Training results of the imaginary writing recognition using BP device and SignBrain device

    图  19  SignBrain设备6个频率点视觉诱发O1电极记录脑电信号FFT图

    Fig.  19  Demonstrations for the six frequency evoked signals by SSVEP using SignBrain Device

    表  1  SignBrain与其他厂商便携脑电设备的技术指标对比

    Table  1  Comparison of technical specificities between SignBrain and the existing portable EEG devices

    对比参数 SignBrain Emotiv[14] 美国
    CGX[15]
    奥地利
    g.tec[16]
    通道数量 16 14 20 16
    采样频率 (Hz) ≥976 256 500 500
    A/D位数 24 16 24 24
    A/D分辨率 (μV) 0.53 0.51 0.53
    阻抗 > 500 MΩ > 100 MΩ
    共模抑制比 (dB) ≥ 111
    噪声 (uV) ≤ 1 μVpp < 1 μVrms < 0.6 μVrms
    结构设计 爪形 爪形 爪形 脑电帽
    重量 160 g 170 g 526 g 140 g
    下载: 导出CSV

    表  2  SignBrain设备与德国BP设备技术指标对比

    Table  2  Comparison of technical specificities between SignBrain device and German BP device

    对比参数 SignBrain BrainAmp DC
    通道数量 16 32
    采样频率 (Hz) 976 5000
    A/D分辨率 (μV) 0.53 0.1
    输入动态范围μV(Vpp) ±17578 ±16384
    阻抗 实时阻抗 非实时阻抗
    共模抑制比 (dB) ≥ 111 ≥110
    噪声 (uV) ≤ 1 < 1
    电极材质 Ag/AgCL Ag/AgCL
    下载: 导出CSV

    表  3  不同模型在SignBrain数据集上进行抑郁分类效果

    Table  3  The performance of different models in classifying depression on the SignBrain dataset

    Model Acc Pre Rec F1-score
    DAN (Long et al. , 2015) 74.36 58.92 60.19 58.91
    DANN (Ganin et al. , 2016) 74.37 65.92 63.09 62.88
    ADA (Haeusser et al. , 2017) 80.47 69.37 68.81 67.95
    DCANN (Ours) 82.73 70.61 69.42 68.67
    下载: 导出CSV

    表  4  视觉皮层O1通道诱发频率与刺激频率的误差

    Table  4  The error between the induced frequency of the O1 channel and the stimulus frequency

    刺激频率 (Hz) 10.813.61520.622.724.1
    实际诱发频率 (Hz) 10.7513.5815.0320.6522.6424.07
    误差 (%) 7.12.84.37.18.64.3
    下载: 导出CSV
  • [1] Mohamad Sawan, Muhammad T. Salam, Jérôme Le Lan, Amal Kassab, Sébastien Gélinas, Phetsamone Vannasing. Wireless Recording Systems: From Noninvasive EEG-NIRS to Invasive EEG Devices. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7(2): 186−195. doi: 10.1109/TBCAS.2013.2255595
    [2] 国家质量监督检验检疫总局, JJG 1043-2008, 脑电图机检定规程, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, JJG 1043-2008, Electroencephalographs, 2008.
    [3] 国家药监局, GB 9706.226-2021 , 医用电气设备 第2-26部分: 脑电图机的基本安全和基本性能专用要求, 2021.

    National Medical Products Administration, GB 9706.226-2021, Medical electrical equipment—Part 2-26: Particular requirements for the basic safety and essential performance of electroencephalographs.
    [4] “American electroencephalographic society guidelines for standard electrode position nomenclature,”Journal of Clinical Neurophysiology, vol. 8, pp. 200-202, 1991.
    [5] Greentek Company. Sintered Ag/AgCl Electrode [EB/OL]. https://www.medicalexpo.com.cn/prod/wuhan-greentek/product-118176-1004859.html.
    [6] Erwin Habibzadeh Tonekabony Shad, Marta Molinas, Trond Ytterdal. Impedance and Noise of Passive and Active Dry EEG Electrodes: A Review. IEEE Sensors Journal, DOI: 10.1109/JSEN.2020.3012394
    [7] Advantages of Nylon [Online], available: https://voltplastics.com/ about-us/ news-and-articles-page/66/advantages-of-nylon.
    [8] 左年明, 蒋田仔. 穿戴式脑认知检测和调控无线闭环设备及方法. 中国: CN114916939B, 2022-11-08.

    Zuo Nian-Ming, Jiang Tian-Zi. Wireless wearable brain cognitive detection and control closed-loop device. China: CN114916939B, 2022-11-8
    [9] 左年明, 张鑫, 蒋田仔, 张玉瑾, 刘浩. 一种可穿戴式光电同步脑活动无线监测设备. 中国: CN104207770A, 2017-02-15.

    Zuo Nian-Ming, Zhang Xin, Jiang Tian-Zi, Zhang Yu-Jin, Liu Hao. Wearable optoelectronic synchronous brain activity monitoring device. China: CN104207770A, 2017-02-15
    [10] 左年明, 张鑫, 蒋田仔, 张玉瑾, 刘浩. 一种穿戴式无线脑血氧监测设备. 中国: CN204072104U, 2015-01-07.

    Zuo Nian-Ming, Zhang Xin, Jiang Tian-Zi, Zhang Yu-Jin, Liu Hao. Wearable wireless brain blood oxygen monitoring device. China: CN204072104U, 2015-01-07.
    [11] 左年明, 张鑫, 蒋田仔, 陈良甫, 张玉瑾. 一种脑活动事件同步记录系统及方法. 中国: CN104287726B, 2016-08-24.

    Zuo Nian-Ming, Zhang Xin, Jiang Tian-Zi, Chen Liang-Fu, Zhang Yu-Jin. Brain activity event synchronous recording system and method. China: CN104287726B, 2016-08-24.
    [12] Jiang Tian-Zi, Zuo Nian-Ming, Zhang Xin, Zhang Yu-Jin, Liu Hao. Method for Storing Data of Photoelectrically Synchronous Brain Activity Recording, US 20170290524 A1, PCT/CN2014/086904, 2019-10-29
    [13] 左年明, 蒋田仔, 孟庆桐. 基于数据裁剪的脑电数据蓝牙传输系统. 中国: CN114974497A, 2022-08-30.

    Zuo Nian-Ming, Jiang Tian-Zi, Meng Qing-Tong. Bluetooth transmission system of EEG data based on data clipping. China: CN114974497A, 2022-08-30.
    [14] Emotiv EPOC headset [Online], available: http: //www.emotiv.com, Dec 4, 2024
    [15] GCX headset[Online], available: https://www.cgxsystems.com, Dec 4, 2024
    [16] gtec headset[Online], available: https://www.gtec.at/product, Dec 4, 2024
    [17] BP BrainAmp DC [Online], available: https://www.brainproducts.com, Dec 4, 2024
    [18] 姜婉清. 基于迁移学习的脑电信号情绪识别算法研究[硕士论文] 中国科学院大学, 2023

    Jiang W. EEG Emotion Recognition Based on Transfer Learning [Master thesis] University of Chinese Academy of Sciences, CHINA , 2023.
    [19] Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks. Journal of machine learning research, 2016, 17(59): 1−35.
    [20] Krzanowski, W. J. , Principles of Multivariate Analysis, Oxford University Press, Oxford, 1988.
  • 加载中
计量
  • 文章访问数:  9
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-03-26

目录

    /

    返回文章
    返回