2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应动态规划的量化通信下协同最优输出调节

王冰洁 徐磊 林宗利 施阳 杨涛

王冰洁, 徐磊, 林宗利, 施阳, 杨涛. 基于自适应动态规划的量化通信下协同最优输出调节. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240494
引用本文: 王冰洁, 徐磊, 林宗利, 施阳, 杨涛. 基于自适应动态规划的量化通信下协同最优输出调节. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240494
Wang Bing-Jie, Xu Lei, Lin Zong-Li, Shi Yang, Yang Tao. Cooperative optimal output regulation under quantized communication based on adaptive dynamic programming. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240494
Citation: Wang Bing-Jie, Xu Lei, Lin Zong-Li, Shi Yang, Yang Tao. Cooperative optimal output regulation under quantized communication based on adaptive dynamic programming. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240494

基于自适应动态规划的量化通信下协同最优输出调节

doi: 10.16383/j.aas.c240494 cstr: 32138.14.j.aas.c240494
基金项目: 国家重点研发计划(2022YFB3305904), 国家自然科学基金(62133003, 61991403)资助
详细信息
    作者简介:

    王冰洁:东北大学流程工业综合自动化国家重点实验室博士研究生. 主要研究方向为自适应动态规划和网络控制系统. E-mail: 2210356@stu.neu.edu.cn

    徐磊:东北大学流程工业综合自动化国家重点实验室博士研究生. 主要研究方向为分布式优化, 网络控制系统和事件触发控制. E-mail: 2010345@stu.neu.edu.cn

    林宗利:弗吉尼亚大学电气和计算机工程系教授. 主要研究方向为非线性控制理论和控制理论应用.E-mail: zl5y@virginia.edu

    施阳:维多利亚大学机械工程系教授. 主要研究方向为模型预测控制, 系统与控制和分布式控制系统. E-mail: yshi@uvic.ca

    杨涛:东北大学流程工业综合自动化国家重点实验室教授. 主要研究方向为工业人工智能, 信息物理系统和分布式优化. 本文通信作者. E-mail: yangtao@mail.neu.edu.cn

Cooperative Optimal Output Regulation Under Quantized Communication Based on Adaptive Dynamic Programming

Funds: National Key Research and Development Program of China (2022YFB3305904), and National Natural Science Foundation of China (62133003, 61991403)
More Information
    Author Bio:

    WANG Bing-Jie Ph.D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. Her research interest covers adaptive dynamic programming and networked control systems

    XU Lei Ph.D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. His research interest covers distributed optimization, networked control systems, and event-triggered control

    LIN Zong-Li Professor at the Department of Electrical and Computer Engineering, University of Virginia. His research interest covers nonlinear control theory and control theory applications

    SHI Yang Professor at the Department of Mechanical Engineering, University of Victoria. His research interest covers model predictive control, systems and control, and distributed control systems

    YANG Tao Professor at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. His research interest covers industrial artificial intelligence, cyber physical system, distributed optimization. Corresponding author of this paper

  • 摘要: 本文考虑了量化通信下多智能体系统的协同最优输出调节问题. 为了降低通信负担, 本文利用取整量化器将智能体之间传输的浮点数数据转化为整数, 从而减少通信信道中传输数据的比特数. 通过将量化器引入到编码-解码方案中, 设计了分布式量化观测器, 保证了在量化通信下, 每个跟随者对外部系统状态的估计误差渐近收敛至零. 在此基础上, 在多智能体系统动态未知的情况下, 提出基于自适应动态规划的数据驱动算法, 在线学习次优控制策略, 解决协同最优输出调节问题, 保证每个跟随者的输出信号渐近跟踪参考信号, 并抑制由外部系统产生的干扰信号. 最后, 在智能车联网自适应巡航控制系统上进行了仿真实验并验证了所提方法的有效性. 结果表明与精确通信相比, 量化通信下比特数降低了58.33%.
  • 图  1  编码-解码方案.

    Fig.  1  Encoder-decoder scheme.

    图  2  理论部分全文示意图.

    Fig.  2  Illustration of the theoretical part.

    图  3  车辆通信拓扑图.

    Fig.  3  Vehicular platoon communication topology.

    图  4  量化通信下外部系统状态估计误差$\tilde{\eta}_{i}(t)$的轨迹.

    Fig.  4  The trajectory of the exosystem state estimation error $\tilde{\eta}_{i}(t)$ under quantized communication.

    图  5  每辆车$P_{i,\;k}$与最优解$P_{i}^{*}$的比较.

    Fig.  5  Comparisons of $P_{i,\;k}$ and the optimal solution $ P_{i}^{*}$ of each vehicle.

    图  6  车联网自动驾驶车辆的实际轨迹$x_{i}$与参考轨迹$x^{*}_{i}$.

    Fig.  6  Actual trajectories $x_{i}$ of connected and autonomous vehicles and their references $x^{*}_{i}$.

    图  7  初始控制策略下车联网自动驾驶车辆的实际轨迹$x_{i}$与参考轨迹$x^{*}_{i}$.

    Fig.  7  Actual trajectories $x_{i}$ of connected and autonomous vehicles and their references $x^{*}_{i}$ under the initial control strategy.

    表  1  达到$ ||P_{i,\;k}-P_{i}^{*}||<10^{-4} $有无量化通信传输的比特数.

    Table  1  Transmitted bits with and without quantized communication to reach $ ||P_{i,\;k}-P_{i}^{*}||<10^{-4} $.

    算法1下传输的比特数 无量化通信传输的比特数[3] 降低百分比
    80000 192000 58.33%
    下载: 导出CSV
  • [1] Liu L. Adaptive cooperative output regulation for a class of nonlinear multi-agent systems. IEEE Transactions on Automatic Control, 2014, 60(6): 1677−1682
    [2] Cai H, Huang J. The leader-following attitude control of multiple rigid spacecraft systems. Automatica, 2014, 50(4): 1109−1115 doi: 10.1016/j.automatica.2014.01.003
    [3] Gao W N, Jiang Z P, Lewis F L, Wang Y B. Cooperative optimal output regulation of multi-agent systems using adaptive dynamic programming. American Control Conference, 20172674−2679
    [4] Huang J. Nonlinear Output Regulation: Theory and Applications. USA: Society for Industrial and Applied Mathematics, 2004.
    [5] 吴苗苗, 张皓, 严怀成, 陈世明. 异步切换多智能体系统的协同输出调节. 自动化学报, 2017, 43(5): 735−742

    Wu Miao-Miao, Zhang Hao, Yan Huai-Cheng, Chen Shi-Ming. Cooperative output regulation for asynchronously switched multi-agent systems. Acta Automatica Sinica, 2017, 43(5): 735−742
    [6] 刘娟, 张皓, 王祝萍. 基于自触发的异构多智能体协同输出调节. 自动化学报, 2019, 45(10): 1893−1902

    Liu Juan, Zhang Hao, Wang Zhu-Ping. Cooperative output regulation of heterogeneous multi-agent systems by self-triggered. Acta Automatica Sinica, 2019, 45(10): 1893−1902
    [7] Wang S M, Zhang H W, Chen Z Y. Adaptive cooperative tracking and parameter estimation of an uncertain leader over general directed graphs. IEEE Transactions on Automatic Control, 2022, 68(7): 3888−3901
    [8] Su Y, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Transactions on Automatic Control, 2011, 57(4): 1062−1066
    [9] Xie K D, Zheng Y W, Jiang Y, Lan W Y, Yu X. Optimal dynamic output feedback control of unknown linear continuous-time systems by adaptive dynamic programming. Automatica, 2024, 163: 111601 doi: 10.1016/j.automatica.2024.111601
    [10] Fu C C, Zhang H, Huang C, Wang Z P, Yan H C. Cooperative output regulation for continuous-time linear periodic systems. IEEE Transactions on Automatic Control, 2024.
    [11] Cai H, Lewis F L, Hu G Q, Huang J. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica, 2017, 75: 299−305 doi: 10.1016/j.automatica.2016.09.038
    [12] Rego F, Pascoal A. Cooperative single-beacon multiple AUV navigation under stringent communication bandwidth constraints. IFAC-PapersOnLine, 2021, 54(16): 216−223 doi: 10.1016/j.ifacol.2021.10.096
    [13] Hu Q L, Shi Y X. Event-based coordinated control of spacecraft formation flying under limited communication. Nonlinear Dynamics, 2020, 99(3): 2139−2159 doi: 10.1007/s11071-019-05396-6
    [14] Zhang J, Liu S, Zhang X F. Output-feedback distributed consensus for nonlinear multi-agent systems with quantization. Information Sciences, 2022, 585: 246−261 doi: 10.1016/j.ins.2021.11.022
    [15] Xu L, Yi X L, Sun J Y, Shi Y, Johansson K H, Yang T. Quantized distributed nonconvex optimization algorithms with linear convergence under the Polyak—Łojasiewicz condition. arXiv: 2207.08106, 2022.
    [16] Xu L, Yi X L, Deng C, Shi Y, Chai T Y, Yang T. Quantized zeroth-order gradient tracking algorithm for distributed nonconvex optimization under Polyak—Łojasiewicz condition. IEEE Transactions on Cybernetics, 2024.
    [17] Huang X, Dong J X. Reliable leader-to-follower formation control of multiagent systems under communication quantization and attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 50(1): 89−99
    [18] Zhou Y J, Wang X Y, Li T. Distributed online optimization under dynamic adaptive quantization. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2024.
    [19] Dong S L, Liu L, Feng G, Liu M Q, Wu Z G. Quantized fuzzy cooperative output regulation for heterogeneous nonlinear multiagent systems with directed fixed/switching topologies. IEEE Transactions on Cybernetics, 2021, 52(11): 12393−12402
    [20] Ma J, Yu X, Liu L, Ji H B, Feng G. Global cooperative output regulation of linear multiagent systems with limited bandwidth. IEEE Transactions on Control of Network Systems, 2021, 9(2): 1017−1028
    [21] Ma J, Yang B, Qiu J Y, Chen Z Q, Hu W F. Quantized cooperative output regulation of continuous-time multi-agent systems over switching graph. Kybernetika, 2024, 60(2): 210−227
    [22] Wang X L, Sun Y, Ding D R. Adaptive dynamic programming for networked control systems under communication constraints: A survey of trends and techniques. International Journal of Network Dynamics and Intelligence, 202285−98
    [23] Zhang Y, Ma L, Yang C Y, Zhou L N, Wang G Q, Dai W. Formation control for multiple quadrotors under DoS attacks via singular perturbation. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4753−4762 doi: 10.1109/TAES.2023.3241139
    [24] Viel C, Kieffer M, Piet-Lahanier H, Bertrand S. Distributed event-triggered formation control for multi-agent systems in presence of packet losses. Automatica, 2022, 141: 110215 doi: 10.1016/j.automatica.2022.110215
    [25] Gao W N, Jiang Z P. Learning-based adaptive optimal output regulation of linear and nonlinear systems: An overview. Control Theory and Technology, 2022, 20(1): 1−19 doi: 10.1007/s11768-022-00081-3
    [26] 温广辉, 杨涛, 周佳玲, 付俊杰, 徐磊. 强化学习与自适应动态规划: 从基础理论到多智能体系统中的应用进展综述. 控制与决策, 2023, 38(5): 1200−1230

    Wen Guang-Hui, Yang Tao, Zhou Jia-Ling, Fu Jun-Jie, Xu Lei. Reinforcement learning and adaptive/approximate dynamic programming: A survey from theory to applications in multi-agent systems. Control and Decision, 2023, 38(5): 1200−1230
    [27] Liu D R, Xue S, Zhao B, Luo B, Wei Q L. Adaptive dynamic programming for control: A survey and recent advances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(1): 142−160
    [28] Shi X T, Li Y J, Du C L, Shi Y, Yang C H, Gui W H. Fully distributed event-triggered control of nonlinear multi-agent systems under directed graphs: A model-free DRL approach. IEEE Transactions on Automatic Control, 2024.
    [29] Lu J W, Wei Q L, Wang F Y. Parallel control for optimal tracking via adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2020, 7(6): 1662−1674 doi: 10.1109/JAS.2020.1003426
    [30] Gao W N, Jiang Z P. Adaptive dynamic programming and adaptive optimal output regulation of linear systems. IEEE Transactions on Automatic Control, 2016, 61(12): 4164−4169 doi: 10.1109/TAC.2016.2548662
    [31] Sun J Y, Ming Z Y. Cooperative differential game-based distributed optimal synchronization control of heterogeneous nonlinear multiagent systems. IEEE Transactions on Cybernetics, 2023, 53(12): 7933−7942 doi: 10.1109/TCYB.2023.3240983
    [32] Gao W N, Mynuddin M, Wunsch D C, Jiang Z P. Reinforcement learning-based cooperative optimal output regulation via distributed adaptive internal model. IEEE Transactions on Neural Nnetworks and Learning Systems, 2021, 33(10): 5229−5240
    [33] Xie K D, Jiang Y, Yu X, Lan W Y. Data-driven cooperative optimal output regulation for linear discrete-time multi-agent systems by online distributed adaptive internal model approach. Science China Information Sciences, 2023, 66(7): 170202 doi: 10.1007/s11432-022-3687-1
    [34] Qasem O, Davari M, Gao W N, Kirk D R, Chai T Y. Hybrid iteration ADP algorithm to solve cooperative, optimal output regulation problem for continuous-time, linear, multiagent systems: Theory and application in islanded modern microgrids with IBRs. IEEE Transactions on Industrial Electronics, 2023, 71(1): 834−845
    [35] Krener A J. The construction of optimal linear and nonlinear regulators. Systems, Models and Feedback: Theory and Applications. USA: Springer, 1992. 301−322
    [36] Kleinman D. On an iterative technique for Riccati equation computations. IEEE Transactions on Automatic Control, 1968, 13(1): 114−115 doi: 10.1109/TAC.1968.1098829
    [37] Gray R M, Neuhoff D L. Quantization. IEEE Transactions on Information Theory, 1998, 44(6): 2325−2383 doi: 10.1109/18.720541
    [38] Chen C T. Linear System Theory and Design. UK: Saunders College, 1984.
    [39] Khalil H K. Nonlinear Systems. USA: Prentice Hall, 2002.
    [40] Stankovic S S, Stanojevic M J, Siljak D D. Decentralized overlapping control of a platoon of vehicles. IEEE Transactions on Control Systems Technology, 2000, 8(5): 816−832 doi: 10.1109/87.865854
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 录用日期:  2024-11-21
  • 网络出版日期:  2025-02-20

目录

    /

    返回文章
    返回