2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分层仿生神经网络的多机器人协同区域搜索算法

陈波 张辉 江一鸣 钟杭 王耀南

陈波, 张辉, 江一鸣, 钟杭, 王耀南. 基于分层仿生神经网络的多机器人协同区域搜索算法. 自动化学报, 2025, 51(3): 1−13 doi: 10.16383/j.aas.c240458
引用本文: 陈波, 张辉, 江一鸣, 钟杭, 王耀南. 基于分层仿生神经网络的多机器人协同区域搜索算法. 自动化学报, 2025, 51(3): 1−13 doi: 10.16383/j.aas.c240458
Chen Bo, Zhang Hui, Jiang Yi-Ming, Zhong Hang, Wang Yao-Nan. A hierarchical bio-inspired neural network based multi-robot cooperative area search algorithm. Acta Automatica Sinica, 2025, 51(3): 1−13 doi: 10.16383/j.aas.c240458
Citation: Chen Bo, Zhang Hui, Jiang Yi-Ming, Zhong Hang, Wang Yao-Nan. A hierarchical bio-inspired neural network based multi-robot cooperative area search algorithm. Acta Automatica Sinica, 2025, 51(3): 1−13 doi: 10.16383/j.aas.c240458

基于分层仿生神经网络的多机器人协同区域搜索算法

doi: 10.16383/j.aas.c240458 cstr: 32138.14.j.aas.c240458
基金项目: 科技创新2030—“新一代人工智能”重大项目(2021ZD0114503), 国家自然科学基金重大研究计划(92148204), 湖南省科技创新领军人才(2022RC3063), 湖南省十大技术攻关项目(2024GK1010), 湖南省重点研发计划(2023GK2068, 2022GK2011)资助
详细信息
    作者简介:

    陈波:湖南大学机器人学院博士研究生. 2022年获得郑州大学控制科学与工程专业硕士学位. 主要研究方向为多机器人系统运动规划. E-mail: cb233cb@163.com

    张辉:湖南大学机器人学院教授, 机器人视觉感知与控制技术国家工程研究中心副主任. 2004年、2007年和2012年获得湖南大学学士、硕士和博士学位. 主要研究方向为机器人视觉感知与智能控制. 本文通信作者. E-mail: zhanghuihby@126.com

    江一鸣:湖南大学机器人学院副教授, 机器人视觉感知与控制技术国家工程研究中心副研究员. 主要研究方向为多机器人协同控制及应用. E-mail: ymjiang@hnu.edu.cn

    钟杭:湖南大学机器人学院副教授. 2013年、2016年和2020年获得湖南大学学士、硕士和博士学位. 主要研究方向为机器人控制, 视觉伺服和路径规划. E-mail: zhonghang@hnu.edu.cn

    王耀南:中国工程院院士, 湖南大学机器人学院教授. 1995年获得湖南大学博士学位. 主要研究方向为机器人学, 智能控制. E-mail: yaonan@hnu.edu.cn

A Hierarchical Bio-inspired Neural Network Based Multi-robot Cooperative Area Search Algorithm

Funds: Supported by National Key Research and Development Program of China (2021ZD0114503), the Major Research Plan of National Natural Science Foundation of China (92148204), the Hunan Leading Talent of Technological Innovation (2022RC3063), the Top Ten Technical Research Projects of Hunan Province (2024GK1010), and the Key Research and Development Program of Hunan Province (2023GK2068, 2022GK2011).
More Information
    Author Bio:

    CHEN Bo Ph.D. candidate at the School of Robotics, Hunan University. He received his master degree in control science and engineering from Zhengzhou University in 2022. His main research interest is motion planning for multi-robot systems

    ZHANG Hui Professor at the School of Robotics, Hunan University, deputy director at the National Engineering Research Center of Robot Visual Perception and Control Technology. He received his bachelor, master and Ph.D. degrees from Hunan University in 2004, 2007 and 2012. His research interest covers robot visual perception and intelligent control. Corresponding author of this paper

    JIANG Yi-Ming Associate professor at the School of Robotics, Hunan University, associate researcher at the National Engineering Research Center of Robot Visual Perception and Control Technology. His research interest covers multi-robot cooperative control and application

    ZHONG Hang Associate professor at the School of Robotics, Hunan University. He received his bachelor, master and Ph.D. degrees from Hunan University in 2013, 2016 and 2020. His research interest covers robot control, visual servoing, and path planning

    WANG Yao-Nan Academician at Chinese Academy of Engineering, professor at the School of Robotics, Hunan University. He received his Ph.D. degree from Hunan University in 1995. His research interest covers robotics and intelligent control

  • 摘要: 针对多机器人系统在战场、灾难现场等复杂未知环境下的区域搜索问题, 提出一种基于分层仿生神经网络的多机器人协同区域搜索算法. 首先将仿生神经网络(Bio-inspired neural network, BNN) 和不同分辨率下的区域栅格地图结合, 构建分层仿生神经网络信息模型, 其中包括区域搜索神经网络信息模型(Area search neural network information model, AS-BNN)和区域覆盖神经网络信息模型(Area coverage neural network information model, AC-BNN). 机器人在任务区域内实时探测到的环境信息将转换为AS-BNN和AC-BNN中神经元的动态活性值. 其次, 在分层仿生神经网络信息模型基础上引入分布式模型预测控制(Distributed model predictive control, DMPC)框架, 并设计多机器人分层协同决策机制. 当机器人处于正常搜索状态时, 基于AS-BNN进行搜索路径滚动优化决策; 当机器人陷入局部最优状态时, 则启用AC-BNN引导机器人快速找到新的未搜索区域. 最后, 在复杂未知环境下进行多机器人区域搜索仿真实验, 并与该领域内的3种算法进行比较. 仿真结果验证了所提算法能够在复杂未知环境下引导多机器人系统高效地完成区域搜索任务.
  • 图  1  区域搜索地图示例

    Fig.  1  The example of the area search map

    图  2  区域搜索地图与区域覆盖地图映射示例$(s_f=2)$

    Fig.  2  The example of mapping the area search map with the area cover map$(s_f=2)$

    图  3  二维BNN结构

    Fig.  3  Two-dimensional BNN structure

    图  4  机器人区域搜索决策流程图

    Fig.  4  Decision-making process of robot area search task

    图  5  区域搜索仿真平台

    Fig.  5  Simulation platform for area search

    图  6  六个机器人在区域搜索过程中不同时刻下的搜索轨迹

    Fig.  6  The search trajectories of six robots at different moments during the area search process

    图  7  分层仿生神经网络信息模型在区域搜索过程中不同时刻下的活性值

    Fig.  7  The activity values of the hierarchical bio-inspired neural network information model at different moments during the area search process

    图  8  六个机器人在不同算法驱动下的区域搜索轨迹

    Fig.  8  Six robots search trajectories in a region driven by different algorithms

    表  2  图8中4种算法的搜索性能比较

    Table  2  Comparison of the search performance of the four algorithms in Fig. 8

    指标 算法
    BNN[26] A-RPSO[12] DCRS[6] 本文算法
    区域覆盖率 94.11% 90.33% 97.56% 100.00%
    平均决策时间 0.0156 s 0.0181 s 0.0251 s 0.0214 s
    下载: 导出CSV

    表  1  主要符号说明

    Table  1  Description of main symbols

    主要符号 具体含义
    $ N_r $ 机器人的数量
    ${ S}_{{\rm cov}}^{k}$ 第$ k $个机器人搜索的面积大小
    ${ S}_{{\rm cov}}^{\rm rep}$ $ N_r $个机器人重复搜索的面积大小
    $ { S}(G(x,\;y)) $ 栅格$ G(x,\;y) $的状态
    ${ S}(A(\hat{x},\;\hat{y}))$ 子区域$A(\hat{x},\;\hat{y})$的状态
    $ K_{\rm u} $ 未搜索栅格状态标记
    $ K_{\rm o} $ 障碍物栅格状态标记
    $ K_{\rm c} $ 自由栅格状态标记
    $ A $ 神经元活性值衰减速率
    $ B $ 神经元活性值上限
    $ -D $ 神经元活性值下限
    $M_r$ 第$i$个神经元的相邻神经元个数
    $\psi_{i}$ AS-BNN第$i$个神经元的活性值
    $\psi_{i}'$ AC-BNN第$i$个神经元的活性值
    $w_{ij} $ 神经元之间连接权重系数
    $I_{i}$ AS-BNN神经元外部输入信号
    $I_{i}'$ AC-BNN神经元外部输入信号
    $L$ DMPC框架下机器人决策预测步长
    $h_{s}(k)$ 机器人在栅格地图下位置状态
    $h_{s}'(k)$ 机器人在覆盖地图下位置状态
    $A(\hat{x}_g,\;\hat{y}_g)$ 机器人局部最优状态下预测的目标子区域
    ${x}_s(k),\;{y}_s(k)$ $k$时刻机器人在栅格地图所处位置
    $\hat{x}_{s}(k),\;\hat{y}_{s}(k)$ $k$时刻机器人在覆盖地图所处位置
    $J$ 用于机器人正常搜索状态下搜索路径预测的搜索收益函数
    $J_E$ 用于机器人局部最优搜索状态下子区域引导路径预测过程的搜索收益函数
    $J_H$ 用于机器人局部最优搜索状态下目标子区域搜索路径预测过程的搜索收益函数
    $ J^{(L)} $ 机器人$L$步累积搜索收益函数
    $J_c$ 神经元活性值增益函数(搜索路径预测)
    $J_c'$ 神经元活性值增益函数(子区域引导路径预测)
    $J_t$ 转弯代价函数
    $J_g$ 目标子区域引导函数
    $\lambda_1$ 函数$J_c$对应的权重系数
    $\lambda_2$ 函数$J_t$对应的权重系数
    $\lambda_3$ 函数$J_g$对应的权重系数
    下载: 导出CSV

    表  3  不同机器人数量下4种算法区域搜索性能对比

    Table  3  Comparison of area search performance of four algorithms under different number of robots

    机器人
    数量
    运动
    步数
    BNN算法[26] A-RPSO算法[12] DCRS算法[6] 本文所提算法
    AVE-C STD-C MAX-C MIN-C AVE-C STD-C MAX-C MIN-C AVE-C STD-C MAX-C MIN-C AVE-C STD-C MAX-C MIN-C
    2 252 84.047% 0.1375 93.556% 72.111% 82.764% 0.0893 94.000% 64.333% 97.164% 0.0330 100.000% 83.556% 99.564% 0.0062 100.000% 98.778%
    4 126 84.592% 0.0737 96.556% 76.333% 85.500% 0.0631 96.111% 65.000% 96.836% 0.0232 99.667% 91.111% 99.656% 0.0039 100.000% 99.111%
    6 84 86.290% 0.0843 95.667% 75.556% 88.587% 0.0391 93.778% 82.889% 97.438% 0.0162 99.889% 92.778% 99.596% 0.0070 100.000% 98.778%
    8 56 82.489% 0.0712 92.444% 71.333% 88.438% 0.0309 93.333% 80.111% 96.106% 0.0231 99.111% 87.444% 99.428% 0.0057 100.000% 98.889%
    下载: 导出CSV
  • [1] Cao X, Li M Y, Tao Y T, Lu P. HMA-SAR: Multi-agent search and rescue for unknown located dynamic targets in completely unknown environments. IEEE Robotics and Automation Letters, 2024, 9(6): 5567−5574 doi: 10.1109/LRA.2024.3396097
    [2] Peng B, Zhang X R, Shang M S. A novel competition-based coordination model with dynamic feedback for multi-robot systems. IEEE/CAA Journal of Automatica Sinica, 2023, 10(10): 2029−2031
    [3] Li K, Zhao K, Song Y D. Adaptive consensus of uncertain multi-agent systems with unified prescribed performance. IEEE/CAA Journal of Automatica Sinica, 2024, 11(5): 1310−1312 doi: 10.1109/JAS.2023.123723
    [4] Huang J H, Zeng J, Chi X M, Sreenath K, Liu Z T, Su H Y. Velocity obstacle for polytopic collision avoidance for distributed multi-robot systems. IEEE Robotics and Automation Letters, 2023, 8(6): 3502−3509 doi: 10.1109/LRA.2023.3269295
    [5] 张方方, 陈波, 班旋旋, 霍本岩, 彭金柱. 基于生物启发神经网络和DMPC的多机器人协同搜索算法. 控制与决策, 2021, 36(11): 2699−2706

    Zhang Fang-Fang, Chen Bo, Ban Xuan-Xuan, Huo Ben-Yan, Peng Jin-Zhu. Multi-robot cooperative search algorithm based on bio-inspired neural network and DMPC. Control and Decision, 2021, 36(11): 2699−2706
    [6] Chen B, Zhang H, Zhang F F, Liu Y H, Tan C, Yu H N, et al. A multirobot distributed collaborative region coverage search algorithm based on Glasius bio-inspired neural network. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15(3): 1449−1462 doi: 10.1109/TCDS.2022.3218718
    [7] Chen B, Zhang H, Zhang F F, Jiang Y M, Miao Z Q, Yu H N, et al. DIBNN: A dual-improved-BNN based algorithm for multi-robot cooperative area search in complex obstacle environments. IEEE Transactions on Automation Science and Engineering, DOI: 10.1109/TASE.2024.3379166
    [8] Zheng X M, Jain S, Koenig S, Kempe D. Multi-robot forest coverage. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005. 3852−3857
    [9] Pehlivanoglu Y V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV. Aerospace Science and Technology, 2012, 16(1): 47−55 doi: 10.1016/j.ast.2011.02.006
    [10] Dong W, Liu S S, Ding Y, Sheng X J, Zhu X Y. An artificially weighted spanning tree coverage algorithm for decentralized flying robots. IEEE Transactions on Automation Science and Engineering, 2020, 17(4): 1689−1698
    [11] Nair V G, Guruprasad K R. MR-SimExCoverage: Multi-robot simultaneous exploration and coverage. Computers & Electrical Engineering, 2020, 85: Article No. 106680
    [12] Dadgar M, Jafari S, Hamzeh A. A PSO-based multi-robot cooperation method for target searching in unknown environments. Neurocomputing, 2016, 177: 62−74 doi: 10.1016/j.neucom.2015.11.007
    [13] Zhang J Q, Lin Y X, Zhou M C. Virtual-source and virtual-swarm-based particle swarm optimizer for large-scale multi-source location via robot swarm. IEEE Transactions on Evolutionary Computation, DOI: 10.1109/TEVC.2024.3391622
    [14] Tang, H W, Sun W, Yu H S, Lin A P, Xue M. A multirobot target searching method based on bat algorithm in unknown environments. Expert Systems With Applications, 2020, 141: Article No. 112945 doi: 10.1016/j.eswa.2019.112945
    [15] Zhou Z W, Luo D L, Shao J, Xu Y, You Y C. Immune genetic algorithm based multi-UAV cooperative target search with event-triggered mechanism. Physical Communication, 2020, 41: Article No. 101103 doi: 10.1016/j.phycom.2020.101103
    [16] Yang B, Ding Y S, Jin Y C, Hao K R. Self-organized swarm robot for target search and trapping inspired by bacterial chemotaxis. Robotics and Autonomous Systems, 2015, 72: 83−92 doi: 10.1016/j.robot.2015.05.001
    [17] Garg V. E2RGWO: Exploration enhanced robotic GWO for cooperative multiple target search for robotic swarms. Arabian Journal for Science and Engineering, 2023, 48(8): 9887−9903 doi: 10.1007/s13369-022-07438-5
    [18] Hou K, Yang Y J, Yang X R, Lai J Z. Distributed cooperative search algorithm with task assignment and receding horizon predictive control for multiple unmanned aerial vehicles. IEEE Access, 2021, 9: 6122−6136 doi: 10.1109/ACCESS.2020.3048974
    [19] Dai W, Lu H M, Xiao J H, Zeng Z W, Zheng Z Q. Multi-robot dynamic task allocation for exploration and destruction. Journal of Intelligent & Robotic Systems, 2020, 98: 455−479
    [20] Li J, Tan Y. A two-stage imitation learning framework for the multi-target search problem in swarm robotics. Neurocomputing, 2019, 334: 249−264 doi: 10.1016/j.neucom.2019.01.035
    [21] Liu B, Wang X P, Zhou W. Multi-UAV collaborative search and strike based on reinforcement learning. Journal of Physics: Conference Series, 2020, 1651 : Article No. 012115
    [22] Wang X Y, Fang X. A multi-agent reinforcement learning algorithm with the action preference selection strategy for massive target cooperative search mission planning. Expert Systems With Applications, 2023, 231: Article No. 120643 doi: 10.1016/j.eswa.2023.120643
    [23] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 1952, 117(4): 500−544 doi: 10.1113/jphysiol.1952.sp004764
    [24] Grossberg S. Contour enhancement, short term memory, and constancies in reverberating neural networks. Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition, and Motor Control, 1982: 332−378
    [25] Luo C M, Yang S X, Stacey D A. Real-time path planning with deadlock avoidance of multiple cleaning robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422). Taiwan, China: IEEE, 2003, 4080−4085
    [26] Luo C M, Yang S X, Li X D, Meng M Q H. Neural-dynamics-driven complete area coverage navigation through cooperation of multiple mobile robots. IEEE Transactions on Industrial Electronics, 2017, 64(1): 750−760 doi: 10.1109/TIE.2016.2609838
    [27] Sun B, Zhu D Q, Tian C, Luo C M. Complete coverage autonomous underwater vehicles path planning based on Glasius bio-inspired neural network algorithm for discrete and centralized programming. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11(1): 73−84
    [28] Muthugala M A V J, Samarakoon S M B P, Elara M R. Toward energy-efficient online complete coverage path planning of a ship hull maintenance robot based on Glasius bio-inspired neural network. Expert Systems With Applications, 2022, 187: Article No. 115940 doi: 10.1016/j.eswa.2021.115940
    [29] Zhao L, Li R, Han J D, Zhang J L. A distributed model predictive control-based method for multidifferent-target search in unknown environments. IEEE Transactions on Evolutionary Computation, 2023, 27(1): 111−125 doi: 10.1109/TEVC.2022.3161942
    [30] Conte C, Jones C N, Morari M, Zeilinger M N. Distributed synthesis and stability of cooperative distributed model predictive control for linear systems. Automatica, 2016, 69: 117−125 doi: 10.1016/j.automatica.2016.02.009
    [31] Qiao K J, Liang J, Yu K J, Yue C T, Lin H Y, Zhang D Z, et al. Evolutionary constrained multiobjective optimization: Scalable high-dimensional constraint benchmarks and algorithm. IEEE Transactions on Evolutionary Computation, 2024, 28(4): 965−979
    [32] Grossberg S. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks, 1988, 1(1): 17−61
    [33] Ni J J, Yang S X. Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments. IEEE Transactions on Neural Networks, 2011, 22(12): 2062−2077 doi: 10.1109/TNN.2011.2169808
  • 加载中
计量
  • 文章访问数:  220
  • HTML全文浏览量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 录用日期:  2024-09-18
  • 网络出版日期:  2024-10-09

目录

    /

    返回文章
    返回