2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌套运动饱和下分布式多移动机器人反振荡安全编队控制

郑志 江涛 杨玥 苏晓杰

郑志, 江涛, 杨玥, 苏晓杰. 嵌套运动饱和下分布式多移动机器人反振荡安全编队控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240444
引用本文: 郑志, 江涛, 杨玥, 苏晓杰. 嵌套运动饱和下分布式多移动机器人反振荡安全编队控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240444
Zheng Zhi, Jiang Tao, Yang Yue, Su Xiao-Jie. Distributed multi-mobile robot anti-oscillation safety formation control with nested motion saturation. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240444
Citation: Zheng Zhi, Jiang Tao, Yang Yue, Su Xiao-Jie. Distributed multi-mobile robot anti-oscillation safety formation control with nested motion saturation. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240444

嵌套运动饱和下分布式多移动机器人反振荡安全编队控制

doi: 10.16383/j.aas.c240444 cstr: 32138.14.j.aas.c240444
基金项目: 国家自然科学基金(62173051, 62106027, 62306228), 陕西省重点研发项目(2024GX-YBXM-132)资助
详细信息
    作者简介:

    郑志:重庆大学自动化学院博士研究生. 2020年获得哈尔滨工程大学硕士学位. 主要研究方向为多智能体系统协同. E-mail: zhizheng@cqu.edu.cn

    江涛:重庆大学自动化学院副教授. 2020年获得北京理工大学博士学位. 主要研究方向为飞行器控制与轨迹规划. 本文通信作者. E-mail: jiangtao_1992@cqu.edu.cn

    杨玥:西安建筑科技大学信息与控制工程学院副教授. 2022年获得重庆大学博士学位. 主要研究方向为智能控制与自主无人系统应用. E-mail: yangyue@xauat.edu.cn

    苏晓杰:重庆大学自动化学院教授. 2013年获哈尔滨工业大学控制科学与工程博士学位. 主要研究方向为智能控制系统及其在无人系统中的应用. E-mail: suxiaojie@cqu.edu.cn

Distributed Multi-mobile Robot Anti-oscillation Safety Formation Control with Nested Motion Saturation

Funds: Supported by National Natural Science Foundation of China (62173051, 62106027, 62306228), Key Research and Development Program of Shaanxi (2024GX-YBXM-132)
More Information
    Author Bio:

    ZHENG Zhi Ph.D. candidate at the School of Automation, Chongqing University. He received his master degree from Harbin Engineering University in 2020. His research interest covers multi-agent coordination

    JIANG Tao Associate professor at the School of Automation, Chongqing University. He received his Ph.D. degree from Beijing Institute of Technology in 2020. His research interest covers aircraft control and trajectory planning. Corresponding author of this paper

    YANG Yue Associate professor at College of Information and Control Engineering, Xi'an University of Architecture and Technology. She received her Ph.D. degree from Chongqing University in 2022. Her research interest covers Intelligent control and application of autonomous unmanned systems

    SU Xiao-Jie Professor at the College of Automation, Chongqing University. He received Ph.D. degree in control theory and control engineering from the Harbin Institute of Technology, Harbin, in 2013. His current research interests include intelligent control systems, advanced control and system analysis, and application of intelligent robot control

  • 摘要: 运动受速度和加速度嵌套饱和约束, 而反应式躲避安全机制下分布式编队互联的移动机器人更易触发该嵌套饱和, 从而引起编队的剧烈振荡, 所以需要研究该情况下多移动机器人平滑安全协同及其振荡自适应抑制方法. 本文以分布式网络中的移动机器人为研究对象, 首先构建基于视线和速度的低触发势能函数, 实现邻近编队机器人近距排斥作用下的避碰保持; 引入驱动机器人绕过障碍物的安全加速度包络, 并复合近距排斥的弱能量、低触发势能, 避免与非合作障碍物的碰撞. 其次, 嵌入复合自适应辅助动态系统, 平滑躲避过程中触发的嵌套运动饱和和安全加速度约束引起的轨迹振荡; 设计复合非线性反馈框架下的分布式编队控制器, 融合混合的躲避和振荡抑制机制, 实现多机器人障碍环境下的安全编队. 最后, 与现有安全编队方法进行对比仿真和实验验证, 结果表明该方法在嵌套运动饱和约束下可显著提升编队的平滑和安全性能.
  • 图  1  多机器人分布式控制框图

    Fig.  1  Multi-robot distributed control framework

    图  2  基于势场的安全协同机制

    Fig.  2  Safety coordination based on potential fields

    图  3  所提出方法编队控制结果

    Fig.  3  The formation control results of Proposed

    图  5  Sharma2020方法编队控制结果

    Fig.  5  The formation control results of Sharma2020

    图  4  Sharma2020AW方法编队控制结果.

    Fig.  4  The formation control results of Sharma2020AW.

    图  6  多机器人集群平台

    Fig.  6  Multi-robot cluster platform

    图  7  编队平面轨迹对比

    Fig.  7  Formation plane trajectory comparison

    图  8  编队误差对比

    Fig.  8  Formation error comparison

    表  1  编队平滑对比指标

    Table  1  Formation smoothness comparison index

    对比指标 Proposed Sharma2020
    第一次躲避跟随者振荡幅值(m) 0.15 0.90
    第一次躲避跟随者恢复时间(s) 6.20
    第二次躲避领导者振荡幅值(m) 0.21 0.52
    第二次躲避领导者恢复时间(s) 4.20 11.5
    第二次躲避跟随者振荡幅值(m) 0.07 1.20
    第二次躲避跟随者恢复时间(s) 0.00 ——
    下载: 导出CSV
  • [1] 李润梅, 张立威, 王剑. 基于时变间距和相对角度的无人车跟随控制方法研究. 自动化学报, 2018, 44(11): 2031−2040

    Li Run-Mei, Zhang Li-Wei, Wang Jian. A control method of unmanned car following under time-varying relative distance and angle. Acta Automatica Sinica, 2018, 44(11): 2031−2040
    [2] 费思远, 鲜斌, 王岭. 基于群集行为的分布式多无人机编队动态避障控制控制理论与应用, 2022, 39 (1): 1−11

    Fei Si-Yuan, Xian Bin, Wang Lin. Distributed formation control for multiple unmanned aerial vehicles with dynamic obstacle avoidance based on the flocking behavior. Control Theory & Applications, 2022, 39 (1): 1−11
    [3] 李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制. 控制理论与应用, 2020, 37(11): 2423−2431

    Li Zheng-Ping, Xian Bin. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure. Control Theory & Applications, 2020, 37(11): 2423−2431
    [4] Zhang K, Huang L, He Y, Wang B, Chen J, Tian Y, Zhao X. A real-time multi-ship collision avoidance decision-making system for autonomous ships considering ship motion uncertainty. Ocean Engineering, 2023, 278: 114205 doi: 10.1016/j.oceaneng.2023.114205
    [5] FranzèG, Lucia W, Venturino A. A distributed model predictive control strategy for constrained multi-vehicle systems moving in unknown environments. IEEE Transactions on Intelligent Vechicles, 2021, 6(2): 343−352 doi: 10.1109/TIV.2020.3029746
    [6] Park S, Lee S. Formation reconfiguration control with collision avoidance of nonholonomic mobile robots. IEEE Robotics and Automation Letters, 2023, 8(12): 7905−7912 doi: 10.1109/LRA.2023.3324593
    [7] 林俊亭, 倪铭君.基于人工势场的虚拟编组自适应模型预测控制.北京航空航天大学学报, 2023, doi: 10.13700/j.bh.1001-5965.2023.0544

    Lin Jun-Ting, Ni Ming-Jun. Adaptive model predictive control of virtual coupled based on artificial potential field. Journal of Beijing University of Aeronautics and Astronautics, 2023, doi: 10.13700/j.bh.1001-5965.2023.0544
    [8] 黎星华, 刘晓平, 王刚, 吴少波, 李文俊. 面向多智能消防机器人的编队避障控制方法. 机器人, 2024, 46(1): 81−93

    Li Xing-Hua, Liu Xiao-Ping, Wang Gang, Wu Shao-Bo, Li Wen-Jun. A formation obstacle-avoidance control method for multiple intelligent firefighting robots. Robot, 2024, 46(1): 81−93
    [9] 姚瀚晨, 彭建伟, 戴厚德, 林名强. 基于改进弹簧模型的移动机器人柔顺跟随行人方法. 机器人, 2021, 43 (6): 684−693

    Yao Han-Chen, Peng Jian-Wei, Dai Hou-De, Lin Ming-Qiang. A compliant human following method for mobile robot based on an improved spring model. Robot, 43 (6): 684−693
    [10] Wang G, Wang X, Li S. A Guidance module based formation control scheme for multi-mobile robot systems with collision avoidance. IEEE Transactions on Automation Science and Engineering, 2024, 21(1): 382−393 doi: 10.1109/TASE.2022.3228397
    [11] Kamel M, Yu X, Zhang Y. Fault-tolerant cooperative control design of multiple wheeled mobile robots. IEEE Transactions on Control Systems Technology, 2018, 26(2): 756−764 doi: 10.1109/TCST.2017.2679066
    [12] Li Y, Dong S, Li K, Tong S. Fuzzy adaptive fault tolerant time-varying formation control for nonholonomic multirobot systems with range constraints. IEEE Transactions on Intelligent Vechicles, 2023, 8(6): 3668−3679 doi: 10.1109/TIV.2023.3264800
    [13] Dai S, He S, Cai H, Yang C. Adaptive leader-follower formation control of underactuated surface vehicles with guaranteed performance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(3): 1997−2008
    [14] Dai S, Lu K, Jun F. Fixed-time rigidity-based formation maneuvering for nonholonomic multirobot systems with prescribed performance. IEEE Transactions on Cybernetics, 2024, 54(4): 2129−2141 doi: 10.1109/TCYB.2022.3226297
    [15] Fathian K, Safaoui S, Summers TH, Gans NR. Robust distributed planar formation control for higher order holonomic and nonholonomic agents. IEEE Transactions on Robotics, 2022, 52(10): 185−205
    [16] Wang Y, Wang D, Yang S, Shan M. A practical leader-follower tracking control scheme for multiple nonholonomic mobile robots in unknown obstacle environments. IEEE Transactions on Control Systems Technology, 2021, 27(4): 1685−1693
    [17] Lippay ZS, Hoagg, J B. Formation control with time-varying formations, bounded controls, and local collision avoidance. IEEE Transactions on Control Systems Technology, 2022, 30(1): 261−276 doi: 10.1109/TCST.2021.3062824
    [18] 张志伟, 滕英元, 杨慧欣, 倪智宇. 具有速度、加速度约束的机器人编队避障控制. 控制理论与应用, 2020, 37(6): 1388−1396

    Zhang Zhi-Wei, Teng Ying-Yuan, Yang Hui-Xin, Ni Zhi-Yu. Obstacle avoidance control for robots formation with speed and acceleration constraints. Control Theory & Applications, 2020, 37(6): 1388−1396
    [19] Ghaffari A. Analytical design and experimental verification of geofencing control for aerial applications. IEEE/ASME Transactions on Mechatronics, 2020, 26(2): 1106−1117
    [20] Huang F, Chen X, Chen Z, Pan Y. A novel SMMS teleoperation control framework for multiple mobile agents with obstacles avoidance by leader selection. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(3): 1517−1529
    [21] Chang S, Wang Y, Zuo Z, Yang H. Fixed-time formation control for wheeled mobile robots with prescribed performance. IEEE Transactions on Control Systems Technology, 2022, 30(2): 844−851 doi: 10.1109/TCST.2021.3069831
    [22] Rad S, Khosravi A, Sarhadi P. Pitch autopilot design for an autonomous aerial vehicle in the presence of amplitude and rate saturation. Aerospace Science and Technology, 2021, 108: 106371 doi: 10.1016/j.ast.2020.106371
    [23] Li S, Wang X. Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica, 2013, 49: 3359−3367 doi: 10.1016/j.automatica.2013.08.003
    [24] Sharma R, Mondal A, Behera L. Tracking control of mobile robots in formation in the presence of disturbances. IEEE Transactions on Industrial Informatics, 2021, 17(1): 110−123 doi: 10.1109/TII.2020.2983646
  • 加载中
计量
  • 文章访问数:  55
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 录用日期:  2024-10-09
  • 网络出版日期:  2024-12-11

目录

    /

    返回文章
    返回