2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有反馈延迟分布式在线复合优化的动态遗憾性能

侯瑞捷 李修贤 易新蕾 洪奕光 谢立华

侯瑞捷, 李修贤, 易新蕾, 洪奕光, 谢立华. 具有反馈延迟分布式在线复合优化的动态遗憾性能. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240414
引用本文: 侯瑞捷, 李修贤, 易新蕾, 洪奕光, 谢立华. 具有反馈延迟分布式在线复合优化的动态遗憾性能. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240414
Hou Rui-Jie, Li Xiu-Xian, Yi Xin-Lei, Hong Yi-Guang, Xie Li-Hua. Dynamic regret for distributed online composite convex optimization with delayed feedbacks. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240414
Citation: Hou Rui-Jie, Li Xiu-Xian, Yi Xin-Lei, Hong Yi-Guang, Xie Li-Hua. Dynamic regret for distributed online composite convex optimization with delayed feedbacks. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240414

具有反馈延迟分布式在线复合优化的动态遗憾性能

doi: 10.16383/j.aas.c240414 cstr: 32138.14.j.aas.c240414
基金项目: 国家自然科学基金项目(62473292, 62088101), 上海市科技重大专项(2021SHZDZX0100)资助
详细信息
    作者简介:

    侯瑞捷:同济大学电子与信息工程学院博士研究生. 2021年获得兰州大学学士学位. 主要研究方向为分布式在线优化. E-mail: hourj21@tongji.edu.cn

    李修贤:同济大学电子与信息工程学院控制科学与工程系、上海自主智能无人系统科学中心, 教授, 国家级青年人才, IEEE高级会员. 主要研究方向为分布式控制与优化、智能算法、博弈论及无人系统应用. 本文通讯作者. E-mail: xli@tongji.edu.cn

    易新蕾:分别于2011年和2014年获中国地质大学(武汉)专业学士学位和复旦大学硕士学位, 并于2020年获得瑞典皇家理工学院博士学位, 2020年至2022年在瑞典皇家理工学院任职博士后, 2022年至2024年在美国麻省理工学院信息与决策系统实验室任职博士后. 现为同济大学准聘教授, 获2021年欧洲系统与控制博士论文奖提名奖(共四项), 主要研究方向为分布式优化、在线优化、元学习和图神经网络. E-mail: xinleiy@kth.se

    洪奕光:同济大学控制科学与工程系、上海智能科学与技术中心教授. 2020年10月前, 任中国科学院数学与系统科学研究院教授. 主要研究方向为非线性控制、多智能体系统、分布式优化与博弈、机器学习和社交网络. 他是中国人工智能学会会士, 也是中国自动化学会会士. 另外, 他是中国自动化学会控制理论专业委员会的主席, 也是IEEE控制系统协会理事. 他是Control Theory and Technology主编. 他还担任许多期刊的副编委, 包括IEEE Transactions on Automatic Control, IEEE Transactions on Control of Network Systems 和 IEEE Control Systems Magazine. 曾获中国控制会议关肇直奖、IFAC世界大会青年作者奖、中科院青年科学家奖、中国青年科技奖、中国自然科学奖. 他是IEEE会士与CAA会士. E-mail: yghong@tongji.edu.cn

    谢立华:南洋理工大学教授, 先进机器人技术创新中心主任. 主要研究方向为鲁棒控制与估计、网络控制系统、分布式优化、多智能体网络、定位和无人系统. 他是Unmanned Systems主编, 曾担任IET控制丛书主编, 并担任多个期刊的副编委, 包括IEEE Transactions on Automatic Control, Automatica, IEEE Transactions on Control Systems Technology, IEEE Transactions on Control of Network Systems 和 IEEE Transactions on Circuits and Systems-II. 他是IEEE杰出讲师(2012年1月至2014年12月). 他是新加坡工程院院士、IEEE会士、IFAC会士和CAA会士. E-mail: elhxie@ntu.edu.sg

  • 中图分类号: Y

Dynamic Regret for Distributed Online Composite Convex Optimization with Delayed Feedbacks

Funds: Supported by National Natural Science Foundation of China (62473292, 62088101), and Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)
More Information
    Author Bio:

    HOU Rui-Jie Ph.D. candidate at the College of Electronic and Information Engineering, Tongji University. She received her bachelor degree from Lanzhou University in 2021. Her research interest is on distributed online optimization

    LI Xiu-Xian is currently a professor in the Department of Control Science and Engineering and Shanghai Research Institute of Intelligent Autonomous Systems, Tongji University. He is national young talent, and a senior member of IEEE. His research interests include distributed control and optimization, intelligent algorithms, game theory, with applications autonomous vehicles. Corresponding author of this paper

    YI Xin-Lei eceived the B.S. and M.S. degrees in mathematics from China University of Geoscience, Wuhan, China, and Fudan University, Shanghai, China, in 2011 and 2014, respectively, and the Ph.D. degree in electrical engineering from KTH Royal Institute of Technology, Stockholm, Sweden, in 2020. He was a Postdoc with KTH Royal Institute of Technology from 2020 to 2022 and with the Lab for Information & Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA, from 2022 to 2024. He is a tenure-track professor of Shanghai Institute of Intelligent Science and Technology, Tongji University. Dr. Yi's was selected as one of the four finalists for the 2021 European Systems & Control PhD Thesis Award. His current research interests include distributed optimization, online optimization, meta-learning and graph neural networks

    HONG Yi-Guang is currently a Professor in the Department of Control Science and Engineering, Tongji University, Shanghai, China, and Shanghai Institute of Intelligent Science and Technology, Tongji University. Before October 2020, he was a Professor at the Academy of Mathematics and Systems Science, CAS. His current research interests include nonlinear control, multiagent systems, distributed optimization and game, machine learning, and social networks. Dr. Hong is a Fellow of Chinese Association for Artificial Intelligence, and a Fellow of Chinese Association of Automation (CAA). Additionally, he is the Chair of Technical Committee of Control Theory of CAA and was a Board of Governor of IEEE Control Systems Society. He serves as the Editor-in-Chief of Control Theory and Technology. He also serves or served as the Associate Editor for many journals including the IEEE Transactions on Automatic Control, IEEE Transactions on Control of Network Systems, and IEEE Control Systems Magazine. Moreover, he was the recipient of the Guan Zhaozhi Award at the Chinese Control Conference, Young Author Prize of the IFAC World Congress, Young Scientist Award of CAS, the Youth Award for Science and Technology of China, and the National Natural Science Prize of China. He is Fellow of IEEE and CAA

    XIE Li-Hua is currently a professor and Director, Center for Advanced Robotics Technology Innovation. Dr Xie's research interests include robust control and estimation, networked control systems, distributed optimization, multi-agent networks, localization and unmanned systems. He is an Editor-in-Chief for Unmanned Systems and has served as Editor of IET Book Series in Control and Associate Editor of a number of journals including IEEE Transactions on Automatic Control, Automatica, IEEE Transactions on Control Systems Technology, IEEE Transactions on Control of Network Systems, and IEEE Transactions on Circuits and Systems-II. He was an IEEE Distinguished Lecturer (Jan. 2012-Dec. 2014). Dr Xie is Fellow of Academy of Engineering Singapore, IEEE, IFAC, and CAA

  • 摘要: 研究了分布式在线复合优化场景中的几种反馈延迟, 包括梯度反馈、单点Bandit反馈和两点Bandit反馈, 其中, 每个智能体的局部目标函数由一个强凸光滑函数与一个凸的非光滑正则项组成. 在分布式场景下, 研究了每个智能体具有不同的时变延迟. 基于近端梯度下降算法, 分别设计了这三种延迟反馈的分布式在线复合优化算法, 并且对动态遗憾上界进行了分析. 分析结果表示, 延迟梯度反馈和延迟两点Bandit反馈的动态遗憾上界阶数在期望意义下相同, 均为$ {\rm O}(\bar{\tau} (D_T+ $$ 1)+C_T+1) $, 而延迟单点Bandit反馈的动态遗憾上界中$ T $的次数稍差于前两者, 为$ {\rm O}(\sqrt{T\log T}+\bar{\tau} (D_T+1)+C_T+1) $, 其中, $ \bar{\tau} $为所有智能体的平均延迟, $ T $为总迭代次数, $ C_T $和$ D_T $是问题的复杂度度量, 分别称为路径长度和梯度变化度. 这意味着, 存在延迟时, 两点Bandit反馈可以在期望意义下达到与梯度反馈相同阶数的动态遗憾上界, 且在步长选择合适的情况下, 三种反馈类型的平均延迟在动态遗憾上具有相同的阶数. 最后通过仿真实验验证了算法的性能和理论分析结果.
  • 图  1  四种不同规模的网络 (智能体的数量$ N $从左到右从上到下依次为10, 20, 30, 40)

    Fig.  1  Four networks with different sizes (the number of agents $ N $ is 10, 20, 30, 40 from left to right and from top to bottom, respectively)

    图  2  不同网络规模下本文所提出算法的性能表现

    Fig.  2  Performance of the proposed algorithms under different network sizes

    图  3  两种不同的网络拓扑 (网络的连通度从左到右依次为0.2和0.4)

    Fig.  3  Two different network topologies (the connectivity of netwrok is 0.2 and 0.4 from left to right, respectively)

    图  4  不同网络拓扑下本文所提出算法的性能表现

    Fig.  4  Performance of the proposed algorithms under different network topologies

    图  5  不同数据集下本文所提出算法的性能表现

    Fig.  5  Performance of the proposed algorithms under different datasets

    图  6  四种不同延迟分布

    Fig.  6  Four different delay distributions

    图  7  不同延迟分布下本文所提出算法的性能表现

    Fig.  7  Performance of the proposed algorithms under different delay distributions

    图  8  在小网络的不同延迟大小下本文所提出算法的性能表现 (小网络: N=20)

    Fig.  8  Performance of the proposed algorithms under different delays (small network: N=20)

    图  9  在大网络的不同延迟大小下本文所提出算法的性能表现 (大网络: N=100)

    Fig.  9  Performance of the proposed algorithms under different delays of large networks (large network: N=100)

  • [1] Bedi A S, Sarma P, Rajawat K. Adversarial multi-agent target tracking with inexact online gradient descent. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018. 2881−2885
    [2] Karuga G G, Khraban A M, Nair S K, Rice D O. AdPalette: An algorithm for customizing online advertisements on the fly. Decision Support Systems, 2001, 32(2): 85−106 doi: 10.1016/S0167-9236(01)00104-X
    [3] Li X X, Xie L H, Li N. A survey on distributed online optimization and online games. Annual Reviews in Control, 2023, 56: 100904 doi: 10.1016/j.arcontrol.2023.100904
    [4] Eshraghi N, Liang B. Dynamic regret of online mirror descent for relatively smooth convex cost functions. IEEE Control Systems Letters, 2022, 6: 2395−2400 doi: 10.1109/LCSYS.2022.3155067
    [5] Yuan D M, Hong Y G, Ho D W C, Xu S Y. Distributed mirror descent for online composite optimization. IEEE Transactions on Automatic Control, 2020, 66(2): 714−729
    [6] Dixit R, Bedi A S, Rajawat K. Online learning over dynamic graphs via distributed proximal gradient algorithm. IEEE Transactions on Automatic Control, 2020, 66(11): 5065−5079
    [7] Yuan D M, Zhang B Y, Xu S Y, Zhao H Y. Distributed regularized online optimization using forward–backward splitting. Control Theory and Technology, 2023, 21(2): 212−221 doi: 10.1007/s11768-023-00134-1
    [8] Yi X L, Li X X, Yang T, Xie L H, Chai T Y, Karl H J. Regret and cumulative constraint violation analysis for distributed online constrained convex optimization. IEEE Transactions on Automatic Control, 2022, 68(5): 2875−2890
    [9] Molzahn D K, Dörfler F, Sandberg H, Low S H, Chakrabarti S, Baldick R, et al. A survey of distributed optimization and control algorithms for electric power systems. IEEE Transactions on Smart Grid, 2017, 8(6): 2941−2962 doi: 10.1109/TSG.2017.2720471
    [10] Li Z W, Zhang J L. Study on the distributed model predictive control for multi-zone buildings in personalized heating. Energy and Buildings, 2021, 231: 110627 doi: 10.1016/j.enbuild.2020.110627
    [11] 吴庆涛, 朱军龙, 葛泉波, 张明川. 一种基于条件梯度的加速分布式在线学习算法. 自动化学报, 2024, 50(2): 386−402

    Wu Qing-Tao, Zhu Jun-Long, Ge Quan-Bo, Zhang Ming-Chuan. An accelerated distributed online learning algorithm based on conditional gradient. Acta Automatica Sinica, 2024, 50(2): 386−402
    [12] 刘奕葶, 马铭莙, 付俊. 基于有向图的分布式连续时间非光滑耦合约束凸优化分析. 自动化学报, 2024, 50(1): 66−75

    Liu Yi-Ting, Ma Ming-Jun, Fu Jun. Distributed continuous-time non-smooth convex optimization analysis with coupled constraints over directed graphs. Acta Automatica Sinica, 2024, 50(1): 66−75
    [13] Yuan D M, Proutiere A, Shi G D. Distributed online optimization with long-term constraints. IEEE Transactions on Automatic Control, 2021, 67(3): 1089−1104
    [14] Li X X, Yi X L, Xie L H. Distributed online convex optimization with an aggregative variable. IEEE Transactions on Control of Network Systems, 2021, 9(1): 438−449
    [15] Zhang Y J, Dall’Anese E, Hong M Y. Online proximal-ADMM for time-varying constrained convex optimization. IEEE Transactions on Signal and Information Processing over Networks, 2021, 7: 144−155 doi: 10.1109/TSIPN.2021.3051292
    [16] Jin D Q, Chen J, Richard C, Chen J D. Online proximal learning over jointly sparse multitask networks with $\ell_{\infty,\; 1}$ regularization. IEEE Transactions on Signal Processing, 2020, 68: 6319−6335 doi: 10.1109/TSP.2020.3021247
    [17] Wang C, Tang J H, Cheng X H, Liu Y C, Wang C C. Distributed cooperative task planning algorithm for multiple satellites in delayed communication environment. Journal of Systems Engineering and Electronics, 2016, 27(3): 619−633 doi: 10.1109/JSEE.2016.00066
    [18] Quanrud K, Khashabi D. Online learning with adversarial delays. Advances in Neural Information Processing Systems, 2015, 28
    [19] Wang J C, Dong M, Liang B, Boudreau G, Abou-Zeid H. Delay-tolerant OCO with long-term constraints: Algorithm and its application to network resource allocation. IEEE/ACM Transactions on Networking, 2022, 31(1): 147−163
    [20] Wan Y Y, Tu W W, Zhang L J. Online strongly convex optimization with unknown delays. Machine Learning, 2022, 111(3): 871−893 doi: 10.1007/s10994-021-06072-w
    [21] Wang D, Liu J X, Lian J, Liu Y, Wang Z, Wang W. Distributed delayed dual averaging for distributed optimization over time-varying digraphs. Automatica, 2023, 150: 110869 doi: 10.1016/j.automatica.2023.110869
    [22] Bedi A S, Koppel A, Rajawat K. Asynchronous online learning in multi-agent systems with proximity constraints. IEEE Transactions on Signal and Information Processing over Networks, 2019, 5(3): 479−94 doi: 10.1109/TSIPN.2019.2902493
    [23] Inoue K, Hayashi N, Takai S. Distributed online optimization with dynamic coupling constraints under time-varying communication delays. IEEE Access, 2023, 11: 87256−87269 doi: 10.1109/ACCESS.2023.3305529
    [24] Liu B, Wen G, Fang X, Huang T, Chen G. Distributed online generalized Nash Equilibrium learning in multi-cluster games: A delay-tolerant algorithm. arXiv preprint arXiv: 2407.03578. 2024.
    [25] Cao X Y, Başar T. Decentralized online convex optimization based on signs of relative states. Automatica, 2021, 129: 109676 doi: 10.1016/j.automatica.2021.109676
    [26] Flaxman A D, Kalai A T, McMahan H B. Online convex optimization in the bandit setting: Gradient descent without a gradient. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. 2005. 385−394
    [27] Cao X Y, Başar T. Decentralized online convex optimization with feedback delays. IEEE Transactions on Automatic Control, 2021, 67(6): 2889−904
    [28] Wang C, Xu S Y. Distributed online constrained optimization with feedback delays. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(2): 1708−1720
    [29] Xiong M H, Zhang B Y, Yuan D M, Zhang Y J, Chen J. Event-triggered distributed online convex optimization with delayed bandit feedback. Applied Mathematics and Computation, 2023, 445: 127865 doi: 10.1016/j.amc.2023.127865
    [30] Kocic M, Brady D, Stojanovic M. Sparse equalization for real-time digital underwater acoustic communications. In : 'Challenges of Our Changing Global Environment'. Conference Proceedings. 1995. 3 : 1417−1422
    [31] Yi X L, Li X X, Xie L H, Johansson K H. Distributed online convex optimization with time-varying coupled inequality constraints. IEEE Transactions on Signal Processing, 2020, 68: 731−746 doi: 10.1109/TSP.2020.2964200
    [32] Xiong M H, Ho D W C, Zhang B Y, Yuan D M, Xu S Y. Distributed online mirror descent with delayed subgradient and event-triggered communications. IEEE Transactions on Network Science and Engineering, 2024, 11(2): 1702−1715 doi: 10.1109/TNSE.2023.3329523
    [33] Meng M, Li X X, Chen J. Decentralized Nash equilibria learning for online game with Bandit feedback. IEEE Transactions on Automatic Control, 2024, 69(6): 4050−4057 doi: 10.1109/TAC.2023.3342850
    [34] Nguyen T A, Kim Thang N, Trystram D. Handling Delayed Feedback in Distributed online optimization: A projection-free approach. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2024. 197−211
    [35] Matamoros J. Asynchronous online ADMM for consensus problems. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017. 5875−5879
    [36] Li X X, Yi X L, Xie L H. Distributed online optimization for multi-agent networks with coupled inequality constraints. IEEE Transactions on Automatic Control, 2020, 66(8): 3575−91
    [37] Ajalloeian A, Simonetto A, Dall’Anese E. Inexact online proximal-gradient method for time-varying convex optimization. In: 2020 American Control Conference (ACC). 2020. 2850−2857
    [38] 杨涛, 徐磊, 易新蕾, 张圣军, 陈蕊娟, 李渝哲. 基于事件触发的分布式优化算法. 自动化学报, 2022, 48(1): 133−143

    Yang Tao, Xu Lei, Yi Xin-Lei, Zhang Sheng-Jun, Chen Rui-Juan, Li Yu-Zhe. Event-triggered distributed optimization algorithms. Acta Automatica Sinica, 2022, 48(1): 133−143
    [39] Zhang J Q, You K Y, Başar T. Distributed discrete-time optimization in multiagent networks using only sign of relative state. IEEE Transactions on Automatic Control, 2018, 64(6): 2352−2367
    [40] Iutzeler F, Ciblat P, Jakubowicz J. Analysis of max-consensus algorithms in wireless channels. IEEE Transactions on Signal Processing, 2012, 60(11): 6103−6107 doi: 10.1109/TSP.2012.2211593
    [41] Cao X Y, Liu K J R. Online convex optimization with time-varying constraints and bandit feedback. IEEE Transactions on automatic control, 2018, 64(7): 2665−2680
    [42] Yi X L, Li X X, Ya ng, T, Xie L H, Chai T Y, Johansson K H. Distributed bandit online convex optimization with time-varying coupled inequality constraints. IEEE Transactions on Automatic Control, 2020, 66(10): 4620−4635
    [43] Ito S. An optimal algorithm for bandit convex optimization with strongly-convex and smooth loss. In: International Conference on Artificial Intelligence and Statistics. 2020. 2229−2239
    [44] Hazan E, Levy K. Bandit convex optimization: Towards tight bounds. Advances in Neural Information Processing Systems. 2014, 27
    [45] Cassel A, Koren T. Bandit linear control. Advances in Neural Information Processing Systems, 2020, 33: 8872−82
    [46] Parikh N, Boyd S. Proximal algorithms. Foundations and trendsⓇ in Optimization, 2014, 1(3): 127−239 doi: 10.1561/2400000003
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-29
  • 录用日期:  2024-11-21
  • 网络出版日期:  2024-12-25

目录

    /

    返回文章
    返回