[1]
|
Bedi A S, Sarma P, Rajawat K. Adversarial multi-agent target tracking with inexact online gradient descent. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018. 2881−2885
|
[2]
|
Karuga G G, Khraban A M, Nair S K, Rice D O. AdPalette: An algorithm for customizing online advertisements on the fly. Decision Support Systems, 2001, 32(2): 85−106 doi: 10.1016/S0167-9236(01)00104-X
|
[3]
|
Li X X, Xie L H, Li N. A survey on distributed online optimization and online games. Annual Reviews in Control, 2023, 56: 100904 doi: 10.1016/j.arcontrol.2023.100904
|
[4]
|
Eshraghi N, Liang B. Dynamic regret of online mirror descent for relatively smooth convex cost functions. IEEE Control Systems Letters, 2022, 6: 2395−2400 doi: 10.1109/LCSYS.2022.3155067
|
[5]
|
Yuan D M, Hong Y G, Ho D W C, Xu S Y. Distributed mirror descent for online composite optimization. IEEE Transactions on Automatic Control, 2020, 66(2): 714−729
|
[6]
|
Dixit R, Bedi A S, Rajawat K. Online learning over dynamic graphs via distributed proximal gradient algorithm. IEEE Transactions on Automatic Control, 2020, 66(11): 5065−5079
|
[7]
|
Yuan D M, Zhang B Y, Xu S Y, Zhao H Y. Distributed regularized online optimization using forward–backward splitting. Control Theory and Technology, 2023, 21(2): 212−221 doi: 10.1007/s11768-023-00134-1
|
[8]
|
Yi X L, Li X X, Yang T, Xie L H, Chai T Y, Karl H J. Regret and cumulative constraint violation analysis for distributed online constrained convex optimization. IEEE Transactions on Automatic Control, 2022, 68(5): 2875−2890
|
[9]
|
Molzahn D K, Dörfler F, Sandberg H, Low S H, Chakrabarti S, Baldick R, et al. A survey of distributed optimization and control algorithms for electric power systems. IEEE Transactions on Smart Grid, 2017, 8(6): 2941−2962 doi: 10.1109/TSG.2017.2720471
|
[10]
|
Li Z W, Zhang J L. Study on the distributed model predictive control for multi-zone buildings in personalized heating. Energy and Buildings, 2021, 231: 110627 doi: 10.1016/j.enbuild.2020.110627
|
[11]
|
吴庆涛, 朱军龙, 葛泉波, 张明川. 一种基于条件梯度的加速分布式在线学习算法. 自动化学报, 2024, 50(2): 386−402Wu Qing-Tao, Zhu Jun-Long, Ge Quan-Bo, Zhang Ming-Chuan. An accelerated distributed online learning algorithm based on conditional gradient. Acta Automatica Sinica, 2024, 50(2): 386−402
|
[12]
|
刘奕葶, 马铭莙, 付俊. 基于有向图的分布式连续时间非光滑耦合约束凸优化分析. 自动化学报, 2024, 50(1): 66−75Liu Yi-Ting, Ma Ming-Jun, Fu Jun. Distributed continuous-time non-smooth convex optimization analysis with coupled constraints over directed graphs. Acta Automatica Sinica, 2024, 50(1): 66−75
|
[13]
|
Yuan D M, Proutiere A, Shi G D. Distributed online optimization with long-term constraints. IEEE Transactions on Automatic Control, 2021, 67(3): 1089−1104
|
[14]
|
Li X X, Yi X L, Xie L H. Distributed online convex optimization with an aggregative variable. IEEE Transactions on Control of Network Systems, 2021, 9(1): 438−449
|
[15]
|
Zhang Y J, Dall’Anese E, Hong M Y. Online proximal-ADMM for time-varying constrained convex optimization. IEEE Transactions on Signal and Information Processing over Networks, 2021, 7: 144−155 doi: 10.1109/TSIPN.2021.3051292
|
[16]
|
Jin D Q, Chen J, Richard C, Chen J D. Online proximal learning over jointly sparse multitask networks with $\ell_{\infty,\; 1}$ regularization. IEEE Transactions on Signal Processing, 2020, 68: 6319−6335 doi: 10.1109/TSP.2020.3021247
|
[17]
|
Wang C, Tang J H, Cheng X H, Liu Y C, Wang C C. Distributed cooperative task planning algorithm for multiple satellites in delayed communication environment. Journal of Systems Engineering and Electronics, 2016, 27(3): 619−633 doi: 10.1109/JSEE.2016.00066
|
[18]
|
Quanrud K, Khashabi D. Online learning with adversarial delays. Advances in Neural Information Processing Systems, 2015, 28
|
[19]
|
Wang J C, Dong M, Liang B, Boudreau G, Abou-Zeid H. Delay-tolerant OCO with long-term constraints: Algorithm and its application to network resource allocation. IEEE/ACM Transactions on Networking, 2022, 31(1): 147−163
|
[20]
|
Wan Y Y, Tu W W, Zhang L J. Online strongly convex optimization with unknown delays. Machine Learning, 2022, 111(3): 871−893 doi: 10.1007/s10994-021-06072-w
|
[21]
|
Wang D, Liu J X, Lian J, Liu Y, Wang Z, Wang W. Distributed delayed dual averaging for distributed optimization over time-varying digraphs. Automatica, 2023, 150: 110869 doi: 10.1016/j.automatica.2023.110869
|
[22]
|
Bedi A S, Koppel A, Rajawat K. Asynchronous online learning in multi-agent systems with proximity constraints. IEEE Transactions on Signal and Information Processing over Networks, 2019, 5(3): 479−94 doi: 10.1109/TSIPN.2019.2902493
|
[23]
|
Inoue K, Hayashi N, Takai S. Distributed online optimization with dynamic coupling constraints under time-varying communication delays. IEEE Access, 2023, 11: 87256−87269 doi: 10.1109/ACCESS.2023.3305529
|
[24]
|
Liu B, Wen G, Fang X, Huang T, Chen G. Distributed online generalized Nash Equilibrium learning in multi-cluster games: A delay-tolerant algorithm. arXiv preprint arXiv: 2407.03578. 2024.
|
[25]
|
Cao X Y, Başar T. Decentralized online convex optimization based on signs of relative states. Automatica, 2021, 129: 109676 doi: 10.1016/j.automatica.2021.109676
|
[26]
|
Flaxman A D, Kalai A T, McMahan H B. Online convex optimization in the bandit setting: Gradient descent without a gradient. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. 2005. 385−394
|
[27]
|
Cao X Y, Başar T. Decentralized online convex optimization with feedback delays. IEEE Transactions on Automatic Control, 2021, 67(6): 2889−904
|
[28]
|
Wang C, Xu S Y. Distributed online constrained optimization with feedback delays. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(2): 1708−1720
|
[29]
|
Xiong M H, Zhang B Y, Yuan D M, Zhang Y J, Chen J. Event-triggered distributed online convex optimization with delayed bandit feedback. Applied Mathematics and Computation, 2023, 445: 127865 doi: 10.1016/j.amc.2023.127865
|
[30]
|
Kocic M, Brady D, Stojanovic M. Sparse equalization for real-time digital underwater acoustic communications. In : 'Challenges of Our Changing Global Environment'. Conference Proceedings. 1995. 3 : 1417−1422
|
[31]
|
Yi X L, Li X X, Xie L H, Johansson K H. Distributed online convex optimization with time-varying coupled inequality constraints. IEEE Transactions on Signal Processing, 2020, 68: 731−746 doi: 10.1109/TSP.2020.2964200
|
[32]
|
Xiong M H, Ho D W C, Zhang B Y, Yuan D M, Xu S Y. Distributed online mirror descent with delayed subgradient and event-triggered communications. IEEE Transactions on Network Science and Engineering, 2024, 11(2): 1702−1715 doi: 10.1109/TNSE.2023.3329523
|
[33]
|
Meng M, Li X X, Chen J. Decentralized Nash equilibria learning for online game with Bandit feedback. IEEE Transactions on Automatic Control, 2024, 69(6): 4050−4057 doi: 10.1109/TAC.2023.3342850
|
[34]
|
Nguyen T A, Kim Thang N, Trystram D. Handling Delayed Feedback in Distributed online optimization: A projection-free approach. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2024. 197−211
|
[35]
|
Matamoros J. Asynchronous online ADMM for consensus problems. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017. 5875−5879
|
[36]
|
Li X X, Yi X L, Xie L H. Distributed online optimization for multi-agent networks with coupled inequality constraints. IEEE Transactions on Automatic Control, 2020, 66(8): 3575−91
|
[37]
|
Ajalloeian A, Simonetto A, Dall’Anese E. Inexact online proximal-gradient method for time-varying convex optimization. In: 2020 American Control Conference (ACC). 2020. 2850−2857
|
[38]
|
杨涛, 徐磊, 易新蕾, 张圣军, 陈蕊娟, 李渝哲. 基于事件触发的分布式优化算法. 自动化学报, 2022, 48(1): 133−143Yang Tao, Xu Lei, Yi Xin-Lei, Zhang Sheng-Jun, Chen Rui-Juan, Li Yu-Zhe. Event-triggered distributed optimization algorithms. Acta Automatica Sinica, 2022, 48(1): 133−143
|
[39]
|
Zhang J Q, You K Y, Başar T. Distributed discrete-time optimization in multiagent networks using only sign of relative state. IEEE Transactions on Automatic Control, 2018, 64(6): 2352−2367
|
[40]
|
Iutzeler F, Ciblat P, Jakubowicz J. Analysis of max-consensus algorithms in wireless channels. IEEE Transactions on Signal Processing, 2012, 60(11): 6103−6107 doi: 10.1109/TSP.2012.2211593
|
[41]
|
Cao X Y, Liu K J R. Online convex optimization with time-varying constraints and bandit feedback. IEEE Transactions on automatic control, 2018, 64(7): 2665−2680
|
[42]
|
Yi X L, Li X X, Ya ng, T, Xie L H, Chai T Y, Johansson K H. Distributed bandit online convex optimization with time-varying coupled inequality constraints. IEEE Transactions on Automatic Control, 2020, 66(10): 4620−4635
|
[43]
|
Ito S. An optimal algorithm for bandit convex optimization with strongly-convex and smooth loss. In: International Conference on Artificial Intelligence and Statistics. 2020. 2229−2239
|
[44]
|
Hazan E, Levy K. Bandit convex optimization: Towards tight bounds. Advances in Neural Information Processing Systems. 2014, 27
|
[45]
|
Cassel A, Koren T. Bandit linear control. Advances in Neural Information Processing Systems, 2020, 33: 8872−82
|
[46]
|
Parikh N, Boyd S. Proximal algorithms. Foundations and trendsⓇ in Optimization, 2014, 1(3): 127−239 doi: 10.1561/2400000003
|