2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分稀疏高斯过程的多机器人协同感知与围捕

曹凯 陈阳泉 魏云博 刘志 陈超波 高嵩

曹凯, 陈阳泉, 魏云博, 刘志, 陈超波, 高嵩. 基于变分稀疏高斯过程的多机器人协同感知与围捕. 自动化学报, 2025, 51(3): 1−14 doi: 10.16383/j.aas.c240406
引用本文: 曹凯, 陈阳泉, 魏云博, 刘志, 陈超波, 高嵩. 基于变分稀疏高斯过程的多机器人协同感知与围捕. 自动化学报, 2025, 51(3): 1−14 doi: 10.16383/j.aas.c240406
Cao Kai, Chen Yang-Quan, Wei Yun-Bo, Liu Zhi, Chen Chao-Bo, Gao Song. Multi-robot collaborative perception and capture based on variational sparse gaussian process. Acta Automatica Sinica, 2025, 51(3): 1−14 doi: 10.16383/j.aas.c240406
Citation: Cao Kai, Chen Yang-Quan, Wei Yun-Bo, Liu Zhi, Chen Chao-Bo, Gao Song. Multi-robot collaborative perception and capture based on variational sparse gaussian process. Acta Automatica Sinica, 2025, 51(3): 1−14 doi: 10.16383/j.aas.c240406

基于变分稀疏高斯过程的多机器人协同感知与围捕

doi: 10.16383/j.aas.c240406 cstr: 32138.14.j.aas.c240406
基金项目: 国家重点研发计划项目(2022YFE0123400), 陕西省科技厅重点项目(2023-ZDLNY-61, 2022QFY01-16), 国家自然科学基金(62303368), 教育部重点实验室基金(202312-IFTKFKT-007)资助
详细信息
    作者简介:

    曹凯:西安工业大学电子信息工程学院副教授, 主要研究方向为自主系统与智能控制, 机器人集群, 机器人协同控制和源定位. E-mail: caokai@xatu.edu.cn

    陈阳泉:美国加州大学默塞德分校教授, 主要研究方向为机电一体化, 分数阶系统, 智能控制, 信息物理系统和无人机. E-mail: ychen53@ucmerced.edu

    魏云博:西安工业大学电子信息工程学院硕士研究生, 主要研究方向为多智能体集群控制. E-mail: weiyunbo@st.xatu.edu.cn

    刘志:西安工业大学电子信息工程学院硕士研究生, 主要研究方向为多机器人编队控制. E-mail: liuzhi@st.xatu.edu.cn

    陈超波:西安工业大学电子信息工程学院教授, 主要研究方向为智能控制, 分数阶系统和故障诊断与容错控制. E-mail: chenchaobo@xatu.edu.cn

    高嵩:西安工业大学电子信息工程学院教授, 主要研究方向为自主智能与无人系统, 目标探测与识别和智能巡检系统. 本文通信作者. E-mail: gaos@xatu.edu.cn

Multi-robot Collaborative Perception and Capture based on Variational Sparse Gaussian Process

Funds: Supported by National Key Research and Development Program of China (2022YFE0123400), Shaanxi Provincial Department of Science and Technology Key Project (2023-ZDLNY-61, 2022QFY01-16), National Natural Science Foundation of China (62303368), and Ministry of Education Key Laboratory Open Fund (202312-IFTKFKT-007)
More Information
    Author Bio:

    Cao Kai Associate professor at the School of Electronic Information Engineering, Xi'an Technological University. His research interest covers autonomous systems and intelligent control, swarm robots, multi-robot collaborative control, and source localization

    Chen Yang-Quan Professor at the University of California, Merced, USA. His research interest covers mechatronics, fractional order systems, intelligent control, cyber-physical systems, UAV

    Wei Yun-Bo Master student at the School of Electronic Information Engineering, Xi'an Technological University. His research interest is intelligent agent swarm control

    Liu Zhi Master student at the School of Electronic Information Engineering, Xi'an Technological University. His research interest is multi-robot formation control

    Chen Chao-Bo Professor at the School of Electronic Information Engineering, Xi'an Technological University. His research interest covers intelligent control, fractional-order systems, fault diagnosis and fault-tolerant control

    Gao Song Professor at the School of Electronic Information Engineering, Xi'an Technological University. His research interest covers autonomous intelligent unmanned system, target detection and recognition. Corresponding author of this paper

  • 摘要: 针对未知环境下的多机器人环境感知和围捕问题, 提出了一种基于变分稀疏高斯过程回归的分布式感知与围捕算法. 考虑到传统高斯过程回归不适合处理大量数据的问题, 在这项工作中, 首先考虑障碍物的影响, 以引入分离超平面的质心维诺划分算法为机器人动态规划任务区域; 其次, 利用多机器人在任务区域中的移动探索获取环境信息, 并通过变分自由能方法来近似模型的后验分布, 完成对未知环境的感知; 最后, 基于粒子群算法为围捕机器人动态分配围捕点, 实现多机器人的全方位均匀围捕. 通过仿真实验证明, 该算法能够适用于单源、多源以及动态源的围捕, 且能够在保证多机器人编队安全性的同时, 实现较高的迭代速度, 最终成功实现均匀围捕.
  • 图  1  总体框架概述

    Fig.  1  Overview of the overall framework

    图  2  避碰维诺单元

    Fig.  2  Collision avoidance Voronoi unit

    图  3  对污染源的均匀围捕策略

    Fig.  3  Uniform capture strategy for a pollution source

    图  4  高斯分布的污染源

    Fig.  4  Gaussian distribution of pollution sources

    图  5  五个机器人使用VS-GPR策略对单污染源进行围捕的过程

    Fig.  5  Five robots capture single pollution source by VS-GPR

    图  6  五个机器人使用ODMV策略对单污染源进行围捕的过程

    Fig.  6  Five robots capture single pollution source by ODMV

    图  7  六个机器人使用VS-GPR策略对两个污染源进行围捕

    Fig.  7  Six robots capture two pollution sources by VS-GPR

    图  8  六个机器人使用VS-GPR策略对四个污染源进行围捕

    Fig.  8  Six robots capture four pollution sources by VS-GPR

    图  9  多机器人围捕动态污染源

    Fig.  9  Multi-robot capture dynamic pollution source

    图  10  室内实验环境

    Fig.  10  Indoor laboratory environment

    图  11  多无人机控制系统结构框图

    Fig.  11  Block diagram of a multi-UAV control system

    图  12  两种不同的实验场景

    Fig.  12  Two different experiments

    图  13  多无人机围捕单目标源实验

    Fig.  13  Multi-UAV capture single-source experiment

    图  14  多无人机围捕多目标源实验

    Fig.  14  Multi-UAV capture multi-source experiment

    表  1  分类指标及相关工作

    Table  1  The criteria classification and related work

    分类指标[18][19][20][21][22]本文方法
    围捕机器人数量多机器人多机器人多机器人多机器人多机器人多机器人
    被围捕目标源数量单目标源单目标源单目标源单目标源多目标源多目标源
    2D/3D环境2D3D2D2D3D3D
    动态/静态目标源动态动态动态动态动态动态
    是否感知场源信息
    是否有实验验证
    下载: 导出CSV

    表  2  仿真参数设置

    Table  2  Simulation parameter settings

    参数参数值
    任务切换阈值4.5
    障碍物的二维坐标(m)(5.0, 1.5)(1.2, 3.5)(4.0, 5.0)
    障碍物尺寸0.5 m$\times$0.5 m$\times$3.0 m
    UAV最大速度0.3 m/s
    机器人和待围捕点最小距离0.5 m
    下载: 导出CSV

    表  3  单污染源下两种围捕方法对比

    Table  3  Comparison of two capture methods

    围捕方法ODMV围捕VS-GPR围捕
    运行时间(s)197.62102.67
    迭代次数18070
    下载: 导出CSV

    表  4  多机器人围捕多污染源用时对比

    Table  4  Comparison of time consumption for multi-robot capture multi-pollution source

    污染源数量GPR耗时(s)VS-GPR耗时(s)
    2个278.63102.67
    3个319.37113.41
    4个345.56118.32
    5个352.17118.84
    下载: 导出CSV
  • [1] 蒲志强, 易建强, 刘振, 丘腾海, 孙金林, 李非墨. 知识和数据协同驱动的群体智能决策方法研究综述. 自动化学报, 2022, 48(3): 627−643

    Pu Zhi-Qiang, Yi Jian-Qiang, Liu Zhen, Qiu Teng-Hai, Sun Jin-Lin, Li Fei-Mo. A review of the research on swarm intelligence decision-making methods driven by knowledge and data collaboration. Acta Automatica Sinica, 2022, 48(3): 627−643
    [2] Chung T H, Hollinger G A, Isler V. Search and pursuit-evasion in mobile robotics: A survey. Autonomous robots, 2011, 31(4): 299−316 doi: 10.1007/s10514-011-9241-4
    [3] Zhang J, Lu Y, Wu Y, Wang C, Zang D, Abusorrah A, et al. PSO-based sparse source location in large-scale environments with a uav swarm. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5249−5258 doi: 10.1109/TITS.2023.3237570
    [4] Karagüzel T A, Turgut A E, Eiben A E, Ferrante E. Collective gradient perception with a flying robot swarm. Swarm Intelligence, 2023, 17(1): 117−146
    [5] Jang H, Park M, Oh H. Improved Socialtaxis for information-theoretic source search using cooperative multiple agents in turbulent environments. Expert Systems with Applications, 2023, 225: Article No.120033 doi: 10.1016/j.eswa.2023.120033
    [6] Chen L, Zhou C, Wang Y, Zong Y, Lu T, Chen C. Autonomous search investigation for radioactive leaked source based on an updated infotaxis method during nuclear emergency rescue. Nuclear Engineering and Design, 2024, 416: Article No.112769 doi: 10.1016/j.nucengdes.2023.112769
    [7] Ma H, Zhang T, Wu Y, Calmon F P, Li N. Gaussian max-value entropy search for multi-agent Bayesian optimization. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS). Detroit MI, USA: IEEE, 2023. 10028−10035
    [8] Xu Y, Zheng R, Zhang S, Liu M, Huang S. CARE: Confidence-rich autonomous robot exploration using bayesian kernel inference and optimization. IEEE Robotics and Automation Letters, 2023, 8(10): 6755−6762 doi: 10.1109/LRA.2023.3313054
    [9] Jabeen M, Meng Q H, Jing T, Hou H R. Robot odor source localization in indoor environments based on gradient adaptive extremum seeking search. Building and Environment, 2023, 229: Article No.109983 doi: 10.1016/j.buildenv.2023.109983
    [10] Li H, Yuan J, Yuan H. An active olfaction approach using deep reinforcement learning for indoor attenuation odor source localization. IEEE Sensors Journal, 2024, 24(9): 14561−14572 doi: 10.1109/JSEN.2024.3373610
    [11] Latif E, Parasuraman R. Communication-efficient multi-robot exploration using coverage-biased distributed Q-learning. IEEE Robotics and Automation Letters, 2024, 9(3): 2622−2629 doi: 10.1109/LRA.2024.3358095
    [12] Liao Y, Chen A, Cai H, Lu J, Zhang W, Lin B, et al. An experimental study on locating time-varying pollutant sources in a dynamic indoor environment with mechanical ventilation based on multi-robot cooperation. Journal of Building Engineering, 2023, 67: Article No.105962 doi: 10.1016/j.jobe.2023.105962
    [13] Yu L, Huo S, Wang Z, Li K. Hybrid attention-oriented experience replay for deep reinforcement learning and its application to a multi-robot cooperative hunting problem. Neurocomputing, 2023, 523: 44−57 doi: 10.1016/j.neucom.2022.12.020
    [14] Qu X, Gan W, Song D, Zhou L. Pursuit-evasion game strategy of USV based on deep reinforcement learning in complex multi-obstacle environment. Ocean Engineering, 2023, 273: Article No.114016 doi: 10.1016/j.oceaneng.2023.114016
    [15] Zhao Z, Hu Q, Feng H, Feng X, Su W. A cooperative hunting method for multi-AUV swarm in underwater weak information environment with obstacles. Journal of Marine Science and Engineering, 2022, 10(9): 1266 doi: 10.3390/jmse10091266
    [16] Zhou M, Wang Z, Wang J, Cao Z. Multi-robot collaborative hunting in cluttered environments with obstacle-avoiding voronoi cells. IEEE/CAA Journal of Automatica Sinica, 2024, 11(7): 1643−1655 doi: 10.1109/JAS.2023.124041
    [17] Wang X, Xi L, Ding Y, Chen B M. Distributed encirclement and capture of multiple pursuers with collision avoidance. IEEE Transactions on Industrial Electronics, 2023, 71(7): 7520−7530
    [18] Li B, Wang J M, Song C, Yang Z P, Wan K F, Zhang Q F. Multi-UAV roundup strategy method based on deep reinforcement learning CEL-MADDPG algorithm. Expert Systems with Applications, 2024, 245: 123018 doi: 10.1016/j.eswa.2023.123018
    [19] Zhao Z Y, Zhang Y Z, Feng X L, Jiang C, Su W B, Hu Q. A dynamic velocity potential field method for multi-AUV cooperative hunting tasks. Ocean Engineering, 2024, 295: 116813 doi: 10.1016/j.oceaneng.2024.116813
    [20] Fu X W, Zhang Y X, Zhu J D, Wang Q L. Bioinspired cooperative control method of a pursuer group vs. a faster evader in a limited area. Applied Intelligence, 2023, 53(6): 6736−6752 doi: 10.1007/s10489-022-03892-8
    [21] Tian B, Li P, Lu H, Zong Q, He L. Distributed pursuit of an evader with collision and obstacle avoidance. IEEE Transactions on Cybernetics, 2021, 52(12): 13512−13520
    [22] Cao K, Chen Y Q, Gao S, Yan K, Zhang J H, An D. Omni-directional capture for multi-drone based on 3D-Voronoi tessellation. Drones, 2023, 7(7): 458 doi: 10.3390/drones7070458
  • 加载中
计量
  • 文章访问数:  114
  • HTML全文浏览量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 录用日期:  2024-11-21
  • 网络出版日期:  2024-12-12

目录

    /

    返回文章
    返回