2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向RTK定位的整数约束型渐进高斯滤波方法

杨旭升 李唯诣 张文安

杨旭升, 李唯诣, 张文安. 面向RTK定位的整数约束型渐进高斯滤波方法. 自动化学报, 2025, 51(2): 1−10 doi: 10.16383/j.aas.c240384
引用本文: 杨旭升, 李唯诣, 张文安. 面向RTK定位的整数约束型渐进高斯滤波方法. 自动化学报, 2025, 51(2): 1−10 doi: 10.16383/j.aas.c240384
Yang Xu-Sheng, Li Wei-Yi, Zhang Wen-An. Integer-constrained progressive Gaussian filtering method for RTK positioning. Acta Automatica Sinica, 2025, 51(2): 1−10 doi: 10.16383/j.aas.c240384
Citation: Yang Xu-Sheng, Li Wei-Yi, Zhang Wen-An. Integer-constrained progressive Gaussian filtering method for RTK positioning. Acta Automatica Sinica, 2025, 51(2): 1−10 doi: 10.16383/j.aas.c240384

面向RTK定位的整数约束型渐进高斯滤波方法

doi: 10.16383/j.aas.c240384 cstr: 32138.14.j.aas.c240384
基金项目: 国家自然科学基金 (62473335), 浙江省自然科学基金 (LY23F030006), 中国博士后科学基金 (2024M752864) 资助
详细信息
    作者简介:

    杨旭升:浙江工业大学信息工程学院副教授. 主要研究方向为多源信息融合估计和目标定位. E-mail: xsyang@zjut.edu.cn

    李唯诣:浙江工业大学信息工程学院硕士研究生. 主要研究方向为RTK定位和信息融合估计. E-mail: lwy_2210@163.com

    张文安:浙江工业大学信息工程学院教授. 主要研究方向为多源信息融合估计和网络化系统. 本文通信作者. E-mail: wazhang@zjut.edu.cn

Integer-constrained Progressive Gaussian Filtering Method for RTK Positioning

Funds: Supported by National Natural Science Foundation of China (62473335), Natural Science Foundation of Zhejiang Province (LY23F030006), and China Postdoctoral Science Foundation (2024M752864)
More Information
    Author Bio:

    YANG Xu-Sheng Associate professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers multi-source information fusion estimation and target positioning

    LI Wei-Yi Master student at the College of Information Engineering, Zhejiang University of Technology. His research interest covers RTK positioning and information fusion estimation

    ZHANG Wen-An Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers multi-source information fusion estimation and networked systems. Corresponding author of this paper

  • 摘要: 本文研究了卫星信号干扰下 RTK (Real-time kinematic)整周模糊度固定问题, 提出一种基于整数约束型渐进高斯滤波的 RTK 定位方法. 首先, 结合贝叶斯推理与同伦方法优势, 导出一种兼容整数、浮点状态的渐进高斯滤波框架. 其次, 构造从先验分布到后验分布的同伦路径, 以目标浮点状态与模糊度固定的迭代求解来提高信号干扰情形下的整周模糊度固定率. 特别地, 通过渐进地融合卫星双差信息来降低线性化误差, 进而提升对目标状态后验分布的逼近精度. 最后, 通过车载 RTK 实验及后处理分析, 验证了所提方法的有效性和优越性.
  • 图  1  基于高斯滤波的 RTK 定位框图

    Fig.  1  Diagram of RTK positioning based on Gaussian filter

    图  2  RTK 定位示意图

    Fig.  2  Schematic diagram of RTK positioning

    图  3  整数约束型渐进高斯滤波框架

    Fig.  3  Integer-constrained progressive Gaussian filtering framework

    图  4  车辆测试轨迹

    Fig.  4  Trajectory of the vehicle test

    图  5  可见卫星数量

    Fig.  5  Number of visible satellites

    图  6  模糊度固定标志

    Fig.  6  Ambiguity fixed flag

    图  7  Ratio检验值对比

    Fig.  7  Comparison of ratio test value

    图  8  全程位置误差

    Fig.  8  Positioning error throughout the process

    图  9  卫星失锁后定位误差收敛速度

    Fig.  9  Positioning error convergence speed after satellite signal loss

    图  10  开放环境下的位置误差

    Fig.  10  Positioning error in open environment

    表  1  RMSE和固定率对比

    Table  1  Comparison of RMSE and fixed rate

    方法EKFIREKFIEKFREKF所提方法提升
    RMSE-水平 (m)0.87181.02230.96000.90750.669623.19%
    RMSE-垂直 (m)0.29590.61740.51500.28710.206228.18%
    固定率 (%)50.330061.580058.480071.130090.380019.25%
    下载: 导出CSV

    表  2  单个历元平均解算时间

    Table  2  The average calculation time of each epoch

    方法EKFIREKFIEKFREKF所提方法
    时间 (s)0.08210.15060.14900.08630.0899
    下载: 导出CSV
  • [1] Ji R, Jiang X, Chen X, Zhu H, Ge M, Neitzel F. Quality monitoring of real-time GNSS precise positioning service system. Geo-Spatial Information Science, 2023, 26(1): 1−15 doi: 10.1080/10095020.2022.2070554
    [2] Chen Q, Lin H, Kuang J, Luo Y, Niu X. Rapid initial heading alignment for MEMS land vehicular GNSS/INS navigation system. IEEE Sensors Journal, 2023, 23(7): 7656−7666 doi: 10.1109/JSEN.2023.3247587
    [3] 王婷娴, 贾克斌, 姚萌. 面向轻轨的高精度实时视觉定位方法. 自动化学报, 2021, 47(9): 2194−2204

    Wang Ting-Xian, Jia Ke-Bin, Yao Meng. Real-time visual localization method for light-rail with high accuracy. Acta Automatica Sinica, 2021, 47(9): 2194−2204
    [4] Medina D, Calatrava H, Castro-Arvizu J M, Closas P, Vila-Valls J. A collaborative RTK approach to precise positioning for vehicle swarms in urban scenarios. In: Proceedings of IEEE/ION Position, Location and Navigation Symposium (PLANS). Monterey, USA: IEEE, 2023. 254−259
    [5] Tao X, Liu W, Wang Y, Li L, Zhu F, Zhang X. Smartphone RTK positioning with multi-frequency and multi-constellation raw observations: GPS L1/L5, Galileo E1/E5a, BDS B1I/B1C/B2a. Journal of Geodesy, 2023, 97(5): Article No. 43 doi: 10.1007/s00190-023-01731-3
    [6] Gao Y, Jiang Y, Gao Y, Huang G, Yue Z. Solution separation-based integrity monitoring for RTK positioning with faulty ambiguity detection and protection level. GPS Solutions, 2023, 27(3): Article No. 140 doi: 10.1007/s10291-023-01472-y
    [7] 陈杰, 程兰, 甘明刚. 基于高斯和近似的扩展切片高斯混合滤波器及其在多径估计中的应用. 自动化学报, 2013, 39(1): 1−10 doi: 10.1016/S1874-1029(13)60001-4

    Chen Jie, Cheng Lan, Gan Ming-Gang. Extension of SGMF using Gaussian sum approximation for nonlinear/non-Gaussian model and its application in multipath estimation. Acta Automatica Sinica, 2013, 39(1): 1−10 doi: 10.1016/S1874-1029(13)60001-4
    [8] Teunissen P. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. Journal of Geodesy, 1995, 70(1): 65−82
    [9] Chang X W, Yang X, Zhou T. MLAMBDA: A modified LAMBDA method for integer ambiguity determination. In: Proceedings of the 61st Annual Meeting of the Institute of Navigation. Cambridge, USA: 2005. 1086−1097
    [10] Takasu T, Yasuda A. Kalman-filter-based integer ambiguity resolution strategy for long-baseline RTK with ionosphere and troposphere estimation. In: Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, USA: 2010. 161−171
    [11] Gao Y, Jiang Y, Liu B, Gao Y. Integrity monitoring of multi-constellation GNSS-based precise velocity determination in urban environments. Measurement, 2023, 222: Article No. 113676 doi: 10.1016/j.measurement.2023.113676
    [12] Giorgi G, Teunissen P. Carrier phase GNSS attitude determination with the multivariate constrained LAMBDA method. In: Proceedings of 2010 IEEE Aerospace Conference. Big Sky, USA: IEEE, 2010. 1−12
    [13] 张文安, 林安迪, 杨旭升, 俞立, 杨小牛. 融合深度学习的贝叶斯滤波综述. 自动化学报, 2024, 50(8): 1502−1516

    Zhang Wen-An, Lin An-Di, Yang Xu-Sheng, Yu Li, Yang Xiao-Niu. A survey on bayesian filtering with deep learning. Acta Automatica Sinica, 2024, 50(8): 1502−1516
    [14] Fang H, Tian N, Wang Y, Zhou M C, Haile M. Nonlinear Bayesian estimation: From Kalman filtering to a broader horizon. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 401−417 doi: 10.1109/JAS.2017.7510808
    [15] 杨旭升, 王雪儿, 汪鹏君, 张文安. 基于渐进无迹卡尔曼滤波网络的人体肢体运动估计. 自动化学报, 2023, 49(8): 1723−1731

    Yang Xu-Sheng, Wang Xue-Er, Wang Peng-Jun, Zhang Wen-An. Estimation of human limb motion based on progressive unscented Kalman filter network. Acta Automatica Sinica, 2023, 49(8): 1723−1731
    [16] Katriniok A, Abel D. Adaptive EKF-based vehicle state estimation with online assessment of local observability. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1368−1381 doi: 10.1109/TCST.2015.2488597
    [17] Chen X, Wang X, Xu Y. Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended Kalman filter. Sensors, 2014, 14(12): 23630−23649 doi: 10.3390/s141223630
    [18] Li H, Medina D, Vilà-Valls J, Closas P. Robust Kalman filter for RTK positioning under signal-degraded scenarios. In: Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation. Miami, USA: 2019. 3717−3729
    [19] Medina D, Li H, Vilà-Valls J, Closas P. Robust filtering techniques for RTK positioning in harsh propagation environments. Sensors, 2021, 21(4): Article No. 1250 doi: 10.3390/s21041250
    [20] Yuan H, Zhang Z, He X, Wen Y, Zeng J. An extended robust estimation method considering the multipath effects in GNSS real-time kinematic positioning. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1−9
    [21] Huang Y, Zhang Y, Li N, Zhao L. Gaussian approximate filter with progressive measurement update. In: Proceedings of 54th IEEE Conference on Decision and Control (CDC). Osaka, Japan: IEEE, 2015. 4344−4349
    [22] 郑婷婷, 杨旭升, 张文安, 俞立. 一种高斯渐进滤波框架下的目标跟踪方法. 自动化学报, 2018, 44(12): 2250−2258

    Zheng Ting-Ting, Yang Xu-Sheng, Zhang Wen-An, Yu Li. A target tracking method in Gaussian progressive filtering framework. Acta Automatica Sinica, 2018, 44(12): 2250−2258
    [23] Yang X, Zhao C, Chen B. Progressive Gaussian approximation filter with adaptive measurement update. Measurement, 2019, 148: Article No. 106898 doi: 10.1016/j.measurement.2019.106898
    [24] 杨旭升, 吴江宇, 胡佛, 张文安. 基于渐进高斯滤波融合的多视角人体姿态估计. 自动化学报, 2024, 50(3): 607−616

    Yang Xu-Sheng, Wu Jiang-Yu, Hu Fo, Zhang Wen-An. Multi-view human pose estimation based on progressive Gaussian filtering fusion. Acta Automatica Sinica, 2024, 50(3): 607−616
    [25] Verhagen S, Teunissen P. The ratio test for future GNSS ambiguity resolution. GPS Solutions, 2013, 17: 535−548 doi: 10.1007/s10291-012-0299-z
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-24
  • 录用日期:  2024-10-08
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回