2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有向图上不确定性参数系统的有限时间辨识与自适应一致性控制

岳冬冬 史建涛 王钢 曹进德

岳冬冬, 史建涛, 王钢, 曹进德. 有向图上不确定性参数系统的有限时间辨识与自适应一致性控制. 自动化学报, 2025, 51(2): 1−13 doi: 10.16383/j.aas.c240382
引用本文: 岳冬冬, 史建涛, 王钢, 曹进德. 有向图上不确定性参数系统的有限时间辨识与自适应一致性控制. 自动化学报, 2025, 51(2): 1−13 doi: 10.16383/j.aas.c240382
Yue Dong-Dong, Shi Jian-Tao, Wang Gang, Cao Jin-De. Finite-time identification and adaptive consensus control of uncertain parametric systems over directed graphs. Acta Automatica Sinica, 2025, 51(2): 1−13 doi: 10.16383/j.aas.c240382
Citation: Yue Dong-Dong, Shi Jian-Tao, Wang Gang, Cao Jin-De. Finite-time identification and adaptive consensus control of uncertain parametric systems over directed graphs. Acta Automatica Sinica, 2025, 51(2): 1−13 doi: 10.16383/j.aas.c240382

有向图上不确定性参数系统的有限时间辨识与自适应一致性控制

doi: 10.16383/j.aas.c240382 cstr: 32138.14.j.aas.c240382
基金项目: 国家重点研发计划 (2021YFB1714800), 国家自然科学基金 (62373184, 62333010), 江苏省自然科学基金 (BK20240531), 江苏省高等学校自然科学基金 (24KJB120006), 中央高校基本科研业务费专项资金 (2242024k30037, 2242024k30038)资助
详细信息
    作者简介:

    岳冬冬:南京工业大学电气工程与控制科学学院副教授. 2021年获得东南大学控制科学与工程专业博士学位. 东南大学博士后. 主要研究方向为网络系统的分布式自适应辨识, 控制与优化. E-mail: yued@njtech.edu.cn

    史建涛:南京工业大学电气工程与控制科学学院教授. 2016年获得清华大学控制科学与工程专业博士学位. 主要研究方向为最优与学习控制, 分布式协同控制, 故障检测与容错控制. 本文通信作者. E-mail: shjt@njtech.edu.cn

    王钢:北京理工大学自主智能无人系统全国重点实验室教授. 2018年获得北京理工大学控制科学与工程专业博士学位, 同年获得明尼苏达大学电气与计算机工程专业博士学位. 明尼苏达大学博士后. 主要研究方向为信号处理, 强化学习, 信息物理系统, 多智能体系统. E-mail: gangwang@bit.edu.cn

    曹进德:东南大学首席教授. 1998年获得四川大学应用数学专业博士学位. 香港中文大学博士后. IEEE会士, 俄罗斯科学院院士, 欧洲科学院院士. 主要研究方向为复杂网络与复杂系统, 神经动力学与优化. E-mail: jdcao@seu.edu.cn

Finite-time Identification and Adaptive Consensus Control of Uncertain Parametric Systems Over Directed Graphs

Funds: Supported by National Key Research and Development Program of China (2021YFB1714800), National Natural Science Foundation of China (62373184, 62333010), Natural Science Foundation of Jiangsu Province (BK20240531), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (24KJB120006), and the Fundamental Research Funds for the Central Universities (2242024k30037, 2242024k30038)
More Information
    Author Bio:

    YUE Dong-Dong Associate professor at the College of Electrical Engineering and Control Science, Nanjing Tech University. He received his Ph.D. degree in control science and engineering from Southeast University in 2021. He was a postdoctor at Southeast University. His research interest covers distributed adaptive identification, control, and optimization of network systems

    SHI Jian-Tao Professor at the College of Electrical Engineering and Control Science, Nanjing Tech University. He received his Ph.D. degree in control science and engineering from Tsinghua University in 2016. His research interest covers optimal and learning control, distributed and cooperative control, and fault diagnosis and fault-tolerant control. Corresponding author of this paper

    WANG Gang Professor at the State Key Laboratory of Autonomous Intelligent Unmanned Systems, Beijing Institute of Technology. He received his Ph.D. degree in control science and engineering from Beijing Institute of Technology, and his Ph.D. degree in electrical and computer engineering from the University of Minnesota, both in 2018. He was a postdoctor at University of Minnesota. His research interest covers signal processing, reinforcement learning, cyber-physical systems, and mult-iagent systems

    CAO Jin-De Endowed chair professor of Southeast University. He received his Ph.D. degree in applied mathematics from Sichuan University in 1998. He was a postdoctor at Chinese University of Hong Kong. He is elected as a fellow of IEEE, a member of Russian Academy of Sciences, a member of the Academy of Europe. His research interest covers complex networks and complex systems, and neural dynamics and optimization

  • 摘要: 针对有向图上一类不确定性多智能体系统, 研究一体化参数辨识与一致性控制策略. 在现有模型参考自适应一致性(Model reference adaptive consensus, MRACon)框架基础上, 结合动态回归因子扩张与融合(Dynamic regressor extension and mixing, DREM)技术, 提出两类改进的MRACon控制协议, 即固定耦合DREM-MRACon和自适应耦合DREM-MRACon. 其中, 自适应耦合DREM-MRACon在有向支撑树结构上具有时变的耦合增益. 与MRACon相比, 此两类改进算法均能保证系统未知参数的有限时间辨识. 此外, 固定耦合DREM-MRACon保证了多智能体系统的指数时间一致性, 而自适应耦合DREM-MRACon则克服了对于全局网络拓扑特征信息的依赖性. 最后, 通过数值仿真验证了理论成果的有效性.
  • 图  1  多智能体系统的通讯图$\mathcal{G}_1$(红色部分为一个支撑树$\bar{\mathcal{G}}_1$)

    Fig.  1  The communication graph $\mathcal{G}_1 $of the multi-agent systems (with a spanning tree $\bar{\mathcal{G}}_1$ highlighted in red)

    图  2  基于文献[30]提出的MRACon (即式(4))求解得到的一致性误差和参数辨识误差

    Fig.  2  The consensus errors and parameter identification errors by MRACon (4) proposed in [30]

    图  3  基于本文提出的固定耦合DREM-MRACon求解得到的一致性误差和参数辨识误差

    Fig.  3  The consensus errors and parameter identification errors by the proposed fixed-coupling DREM-MRACon

    图  4  多智能体系统的状态轨迹与参数辨识轨迹

    Fig.  4  The state trajectories and parameter identification trajectories of the multi-agent systems

    图  5  基于本文提出的自适应耦合DREM-MRACon求解得到的一致性误差和参数辨识误差

    Fig.  5  The consensus errors and parameter identification errors by the proposed adaptive-coupling DREM-MRACon

    图  6  自适应耦合增益的演化曲线

    Fig.  6  The evolution of the adaptive coupling gains

    图  7  无人艇的偏转状态(偏转角和偏转角速度)轨迹

    Fig.  7  The evolution of the yaw states (yaw angle and yaw rate) of the USVs

    图  8  分别基于本文提出的DREM-MRACon与文献[30]中的基础MRACon得到的误差曲线

    Fig.  8  The error curves by the proposed DREM-MRACon and by the baseline MRACon[30]

    表  1  参数辨识的精确时刻$ T_i $

    Table  1  The exact time $T_i$ for parameter identification

    智能体序号 MRACon[30] 固定耦合
    DREM-MRACon
    自适应耦合
    DREM-MRACon
    1 6.84 7.43
    2 2.77 2.75
    3 2.16 2.26
    4 2.03 1.74
    5 1.74 1.78
    6 1.55 1.74
    下载: 导出CSV
  • [1] Chen W S, Wen C Y, Hua S Y, Sun C Y. Distributed cooperative adaptive identification and control for a group of continuous-time systems with a cooperative PE condition via consensus. IEEE Transactions on Automatic Control, 2014, 59(1): 91−106 doi: 10.1109/TAC.2013.2278135
    [2] Papusha I, Lavretsky E, Murray R M. Collaborative system identification via parameter consensus. In: Proceedings of American Control Conference (ACC). Portland, USA: IEEE, 2014, 13−19
    [3] Wei G L, Li W Y, Ding D R, Liu Y R. Stability analysis of covariance intersection-based kalman consensus filtering for time-varying systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(11): 4611−4622
    [4] Gao C, Wang Z D, Hu J, Liu Y, He X. Consensus-based distributed state estimation over sensor networks with encoding-decoding scheme: Accommodating bandwidth constraints. IEEE Transactions on Network Science and Engineering, 2022, 9(6): 4051−4064 doi: 10.1109/TNSE.2022.3195283
    [5] 田磊, 董希旺, 赵启伦, 李清东, 吕金虎, 任章. 异构集群系统分布式自适应输出时变编队跟踪控制. 自动化学报, 2021, 47(10): 2386−2401

    Tian Lei, Dong Xi-Wang, Zhao Qi-Lun, Li Qing-Dong, Lv Jin-Hu, Ren Zhang. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems. Acta Automatica Sinica, 2021, 47(10): 2386−2401
    [6] Xu X, Gu G Y, Xiong Z H, Sheng X J, Zhu X Y. Development of a decentralized multi-axis synchronous control approach for real-time networks. ISA Transactions, 2017, 68: 116−126 doi: 10.1016/j.isatra.2017.03.012
    [7] Liu W J, Sun J, Wang G, Bullo F, Chen J. Data-driven resilient predictive control under denial-of-service. IEEE Transactions on Automatic Control, 2023, 68(8): 4722−4737 doi: 10.1109/TAC.2022.3209399
    [8] Wang X, Sun J, Wang G, Allgöwer F, Chen J. Data-driven control of distributed event-triggered network systems. IEEE/CAA Journal of Automatica Sinica, 2023, 10(2): 351−364 doi: 10.1109/JAS.2023.123225
    [9] Xu W Y, Wang Z D, Hu G Q, Kurths J. Hybrid nash equilibrium seeking under partial-decision information: An adaptive dynamic event-triggered approach. IEEE Transactions on Automatic Control, 2023, 68(10): 5862−5876 doi: 10.1109/TAC.2022.3226142
    [10] Peng Z H, Wang D, Zhang H W, Sun G. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(8): 1508−1519 doi: 10.1109/TNNLS.2013.2293499
    [11] Yue D D, Cao J D, Li Q, Liu Q S. Neural-network-based fully distributed adaptive consensus for a class of uncertain multiagent systems. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7): 2965−2977 doi: 10.1109/TNNLS.2020.3009098
    [12] 王庆领, 王雪娆. 切换拓扑下非线性多智能体系统自适应神经网络一致性. 控制理论与应用, 2023, 40(4): 633−640 doi: 10.7641/CTA.2022.10847

    Wang Qing-Ling, Wang Xue-Rao. Adaptive NN consensus of nonlinear multi-agent systems under switching topologies. Control Theory and Technology, 2023, 40(4): 633−640 doi: 10.7641/CTA.2022.10847
    [13] Mao B, Wu X Q, Lv J H, Chen G R. Predefined-time bounded consensus of multiagent systems with unknown nonlinearity via distributed adaptive fuzzy control. IEEE Transactions on Cybernetics, 2023, 53(4): 2622−2635 doi: 10.1109/TCYB.2022.3163755
    [14] Wang Y J, Song Y D, Lewis F L. Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3978−3988
    [15] 范泉涌, 张乃宗, 唐勇, 许斌. 基于动态事件触发通信协议的多智能体系统自适应可靠控制. 自动化学报, 2024, 50(5): 924−936

    Fan Quan-Yong, Zhang Nai-Zong, Tang Yong, Xu Bin. Adaptive reliable control of multi-agent systems based on dynamic event-triggered communication protocol. Acta Automatica Sinica, 2024, 50(5): 924−936
    [16] Li Z K, Ren W, Liu X D, Xie L H. Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. Automatica, 2013, 49(7): 1986−1995 doi: 10.1016/j.automatica.2013.03.015
    [17] Lv Y Z, Li Z K, Duan Z S, Feng G. Novel distributed robust adaptive consensus protocols for linear multi-agent systems with directed graphs and external disturbances. International Journal of Control, 2017, 90(2): 137−147 doi: 10.1080/00207179.2016.1172259
    [18] Li Z H, Ding Z T, Sun J Y, Li Z K. Distributed adaptive convex optimization on directed graphs via continuous-time algorithms. IEEE Transactions on Automatic Control, 2023, 63(5): 1434−1441
    [19] Yue D D, Baldi S, Cao J D, Li Q, DeSchutter B. Distributed adaptive resource allocation: An uncertain saddle-point dynamics viewpoint. IEEE/CAA Journal of Automatica Sinica, 2023, 10(12): 2209−2221 doi: 10.1109/JAS.2023.123402
    [20] Ye M J, Hu G Q. Adaptive approaches for fully distributed nash equilibrium seeking in networked games. Automatica, 2021, 129: Article No. 109661 doi: 10.1016/j.automatica.2021.109661
    [21] Baldi S, Yuan S, Frasca P. Output synchronization of unknown heterogeneous agents via distributed model reference adaptation. IEEE Transactions on Control of Network Systems, 2018, 6(2): 515−525
    [22] Azzollini I A, Yu W W, Yuan S, Baldi S. Adaptive leader-follower synchronization over heterogeneous and uncertain networks of linear systems without distributed observer. IEEE Transactions on Automatic Control, 2020, 66(4): 1925−1931
    [23] Goel R, Garg T, Roy S B. Closed-loop reference model based distributed MRAC using cooperative initial excitation and distributed reference input estimation. IEEE Transactions on Control of Network Systems, 2022, 9(1): 37−49 doi: 10.1109/TCNS.2022.3141015
    [24] Agha R, Rehan M, Ahn C K, Mustafa G, Ahmad S. Adaptive distributed consensus control of one-sided lipschitz nonlinear multiagents. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(3): 568−578
    [25] Mei J, Ren W, Chen J. Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph. IEEE Transactions on Automatic Control, 2016, 61(8): 2019−2034 doi: 10.1109/TAC.2015.2480336
    [26] Lv Y Z, Li Z K. Is fully distributed adaptive protocol applicable to graphs containing a directed spanning tree? Science China Information Sciences, 2022, 65(8): Article No. 189203 doi: 10.1007/s11432-020-3129-1
    [27] Yu Z Y, Huang D, Jiang H J, Hu C, Yu W W. Distributed consensus for multiagent systems via directed spanning tree based adaptive control. SIAM Journal on Control and Optimization, 2018, 56(3): 2189−2217 doi: 10.1137/16M1088685
    [28] Yue D D, Baldi S, Cao J D, Li Q, DeSchutter B. A directed spanning tree adaptive control solution to time-varying formations. IEEE Transactions on Control of Network Systems, 2021, 8(2): 690−701 doi: 10.1109/TCNS.2021.3050332
    [29] Yue D D, Baldi S, Cao J D, Li Q, DeSchutter B. Distributed adaptive optimization with weight-balancing. IEEE Transactions on Automatic Control, 2022, 67(4): 2068−2075 doi: 10.1109/TAC.2021.3071651
    [30] Mei J, Ren W, Song Y D. A unified framework for adaptive leaderless consensus of uncertain multi-agent systems under directed graphs. IEEE Transactions on Automatic Control, 2021, 66(12): 6179−6186 doi: 10.1109/TAC.2021.3062594
    [31] Wang X Y, Xu Y J, Cao Y, Li S H. A hierarchical design framework for distributed control of multi-agent systems. Automatica, 2024, 160: Article No. 111402 doi: 10.1016/j.automatica.2023.111402
    [32] 柴天佑, 岳恒. 自适应控制. 北京: 清华大学出版社, 2016.

    Chai Tian-You, Yue Heng. Adaptive Control. Beijing: Tsinghua University Press, 2016.
    [33] Ioannou P A, Sun J. Robust Adaptive Control. New York: Dover Publications, Inc., 2012.
    [34] Aranovskiy S, Bobtsov A, Ortega R, Pyrkin A. Parameters estimation via dynamic regressor extension and mixing. In: Proceedings of American Control Conference (ACC). Boston, MA, USA: IEEE, 2016. 6971−6976
    [35] Ortega R, Nikiforov V, Gerasimov D. On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes. Annual Reviews in Control, 2020, 50: 278−293 doi: 10.1016/j.arcontrol.2020.06.002
    [36] Wang L, Ortega R, Bobtsov A. Observability is sufficient for the design of globally exponentially stable state observers for state-affine nonlinear systems. Automatica, 2023, 149: Article No. 110838 doi: 10.1016/j.automatica.2022.110838
    [37] Ortega R, Gerasimov D N, Barabanov N E, Nikiforov V O. Adaptive control of linear multivariable systems using dynamic regressor extension and mixing estimators: Removing the high-frequency gain assumptions. Automatica, 2019, 110: Article No. 108589 doi: 10.1016/j.automatica.2019.108589
    [38] Wang S B, Lv B, Wen S P, Shi K B, Zhu S, Huang T W. Robust adaptive safety-critical control for unknown systems with finite-time elementwise parameter estimation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(3): 1607−1617 doi: 10.1109/TSMC.2022.3203176
    [39] Shadab S, Revati G, Wagh S, Singh N. Finite-time parameter estimation for an online monitoring of transformer: A system identification perspective. International Journal of Electrical Power and Energy Systems, 2023, 145: Article No. 108639
    [40] Matveev A S, Almodarresi M, Ortega R, Pyrkin A, Xie S Y. Diffusion-based distributed parameter estimation through directed graphs with switching topology: Application of dynamic regressor extension and mixing. IEEE Transactions on Automatic Control, 2022, 67(8): 4256−4263 doi: 10.1109/TAC.2021.3115075
    [41] Ren W, Beard R W. Distributed Consensus in Multi-Vehicle Cooperative Control. London: Springer London, 2008.
    [42] Na J, Herrmann G, Zhang K Q. Improving transient performance of adaptive control via a modified reference model and novel adaptation. International Journal of Robust and Nonlinear Control, 2017, 27(8): 1351−1372 doi: 10.1002/rnc.3636
    [43] Garg T, Roy S B. Distributed adaptive estimation without persistence of excitation: An online optimization perspective. International Journal of Adaptive Control and Signal Processing, 2023, 37(5): 1117−1134 doi: 10.1002/acs.3563
    [44] Cai H, Lewis F L, Hu G Q, Huang J. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica, 2017, 75: 299−305 doi: 10.1016/j.automatica.2016.09.038
    [45] Yuan C Z, Stegagno P, He H B, Ren W. Cooperative adaptive containment control with parameter convergence via cooperative finite-time excitation. IEEE Transactions on Automatic Control, 2021, 66(11): 5612−5618 doi: 10.1109/TAC.2021.3056336
    [46] Hou Q H, Dong J X. Cooperative output regulation of linear multiagent systems with parameter convergence. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(1): 518−528
    [47] Sun Z Y, Rantzer A, Li Z K, Robertsson A. Distributed adaptive stabilization. Automatica, 2021, 129: Article No. 109616 doi: 10.1016/j.automatica.2021.109616
    [48] Shen Y, Wang J. Robustness analysis of global exponential stability collaborative system identificationof recurrent neural networks in the presence of time delays and random disturbances. IEEE Transactions on Neural Networks and Learning Systems, 2011, 23(1): 87−96
    [49] Yu W W, Lv J H, Yu X H, Chen G R. Distributed adaptive control for synchronization in directed complex networks. SIAM Journal on Control and Optimization, 2015, 53(5): 2980−3005 doi: 10.1137/140970781
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  32
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 录用日期:  2024-10-27
  • 网络出版日期:  2025-01-07

目录

    /

    返回文章
    返回