2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进粒子群优化和Stackelberg博弈的武器部署

刘富樯 刘中阳 周伦 皮阳军 蒲华燕 罗均

刘富樯, 刘中阳, 周伦, 皮阳军, 蒲华燕, 罗均. 基于改进粒子群优化和Stackelberg博弈的武器部署. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240257
引用本文: 刘富樯, 刘中阳, 周伦, 皮阳军, 蒲华燕, 罗均. 基于改进粒子群优化和Stackelberg博弈的武器部署. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240257
Liu Fu-Qiang, Liu Zhong-Yang, Zhou Lun, Pi Yang-Jun, Pu Hua-Yan, Luo Jun. Weapon deployment based on improved particle swarm optimization and stackelberg game. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240257
Citation: Liu Fu-Qiang, Liu Zhong-Yang, Zhou Lun, Pi Yang-Jun, Pu Hua-Yan, Luo Jun. Weapon deployment based on improved particle swarm optimization and stackelberg game. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240257

基于改进粒子群优化和Stackelberg博弈的武器部署

doi: 10.16383/j.aas.c240257 cstr: 32138.14.j.aas.c240257
基金项目: 国家自然科学基金(62033001), 重庆市技术创新与应用发展重点项目(CSTB2023TIAD-KPX0057) 资助
详细信息
    作者简介:

    刘富樯:重庆大学机械与运载工程学院副教授. 2015年获得西北工业大学博士学位. 他的主要研究方向为机器人系统设计, 博弈决策与容错控制. 本文通信作者. E-mail: liufq@cqu.edu.cn

    刘中阳:重庆大学机械与运载工程学院硕士. 2021年获得吉林大学学士学位. 他的主要研究方向为智能设备决策规划. E-mail: liuzhongyang0323@163.com

    周伦:重庆大学机械与运载工程学院博士研究生. 2020年获得石河子大学硕士学位. 他的主要研究方向为智能设备决策规划和深度强化学习. E-mail: Lunz0630@163.com

    皮阳军:重庆大学机械与运载工程学院教授. 2010年获得浙江大学博士学位. 他的主要研究方向为分布式参数系统的控制, 智能无人系统和振动控制. E-mail: cqpp@cqu.edu.cn

    蒲华燕:重庆大学机械与运载工程学院教授. 2011年获得华中科技大学博士学位. 她的主要研究方向为智能无人系统, 振动控制和机器人学. E-mail: phygood_2001@shu.edu.cn

    罗均:重庆大学机械与运载工程学院教授. 2000年获得上海交通大学博士学位. 他的主要研究方向为包括人工智能, 传感技术, 智能无人系统和特种机器人. E-mail: luoj@cqu.edu.cn

Weapon Deployment Based on Improved Particle Swarm Optimization and Stackelberg Game

Funds: Supported by National Natural Science Foundation of China (62033001) and Key Project of Technological Innovation and Application Development of Chongqing (CSTB2023TIAD-KPX0057)
More Information
    Author Bio:

    LIU Fu-Qiang Associate professor at the College of Mechanical and Vehicle Engineering, Chongqing University. He received his Ph.D. degree from Northwestern Polytechnical University in 2015. His research interest covers robotic system design, game decision making, and fault-tolerant control. Corresponding author of this paper

    LIU Zhong-Yang Master student at the College of Mechanical and Vehicle Engineering, Chongqing University. He received his bachelor degree from the Jilin University in 2021. His main research interest is intelligent equipment decision planning

    ZHOU Lun Ph.D. candidate at the College of Mechanical and Vehicle Engineering, Chongqing University. He received his master degree from Shihezi University in 2023. His research interest covers intelligent equipment decision planning and deep reinforcement learning

    PI Yang-Jun Professor at the College of Mechanical and Vehicle Engineering, Chongqing University. He received his Ph.D. degree from Zhejiang University in 2010. His research interest covers control of distributed parameter systems, intelligent unmanned systems, and vibration control

    PU Hua-Yan Professor at the College of Mechanical and Vehicle Engineering, Chongqing University. She received her Ph.D. degree from Huazhong University of Science and Technology in 2011. Her research interest covers intelligent unmanned system, vibration controlling, and robotics

    Luo Jun Professor at the College of Mechanical and Vehicle Engineering, Chongqing University. He received his Ph.D. degree from Shanghai Jiao Tong University in 2000. His research interest covers artiffcial intelligence, sensing technology, intelligent unmanned systems, and special robotics

  • 摘要: 为应对来袭目标的机动调整对防区防御能力的影响, 针对性设计全新的部署优化模型和求解算法. 首先, 从战术层面出发, 提出一种考虑攻防信息变化的新型武器部署模型, 该模型能够动态调整部署策略以提高防御系统的整体效能; 其次, 设计基于混沌映射机制和$K$均值聚类与重心法的算法初始化方案, 以应对资源紧缺和充足两种情况, 降低算法陷入局部最优的风险; 然后, 设计基于Metropolis准则的个体最优更新方法和基于Stackelberg博弈模型的全局最优更新方法用以指导种群的进化方向; 最后, 通过提供多规模场景仿真实验, 验证了新模型和所提算法的有效性, 对比实验结果表明, 新模型能够更准确地反映部署方案之间的差异, 所提算法在求解质量与收敛性方面均有显著提高.
  • 图  1  投弹线

    Fig.  1  Bombing lines

    图  2  火力重叠

    Fig.  2  Firepower overlap

    图  3  初始化种群方法框架

    Fig.  3  Framework for population initialization methods

    图  4  场景1进攻路径规划结果

    Fig.  4  Path planning results in the scenario 1

    图  6  场景3进攻路径规划结果

    Fig.  6  Path planning results in the scenario 3

    图  5  场景2进攻路径规划结果

    Fig.  5  Path planning results in the scenario 2

    图  7  三种场景下防御部署方案适应度值收敛曲线

    Fig.  7  Convergence curves of fitness values for defence deployment schemes in three scenarios

    图  8  两种部署模型评价指标值对比

    Fig.  8  Comparison of the evaluation indicator values of two deployment models

    表  1  最优进攻路径代价对比

    Table  1  Comparison of optimal attack path costs

    仿真实例对比指标PSOAGAPSOSSGWOIPSO
    规模场景1最大值87.915790.145383.757781.1419
    最小值84.792285.774979.392278.6324
    平均值85.945287.035781.171279.4218
    均方差6.33206.93407.03187.8558
    规模场景2最大值84.119072.709472.046271.9816
    最小值79.126270.276070.438770.1361
    平均值82.498471.679771.186970.8235
    均方差3.95973.65514.48983.9926
    规模场景3最大值53.340452.751352.699152.6948
    最小值51.276951.276951.276951.2769
    平均值52.890951.959351.940751.9171
    均方差1.35002.81432.25431.9502
    下载: 导出CSV

    表  2  各算法计算时间对比

    Table  2  Comparison of computation time

    算法规模场景1规模场景2规模场景3
    PSO0.68640.84460.9469
    AGAPSO0.63140.84300.9308
    SSGWO0.64370.82360.9107
    IPSO0.63570.79090.8991
    下载: 导出CSV

    表  3  两种模型在对比模型评价指标中的差异

    Table  3  Differences between two models in comparing model evaluation indicators

    规模组别评价指标均值平均值差t显著性
    场景1对比模型0.59270.02881.62650.1212
    本文模型0.6215
    场景2对比模型0.64380.00880.33010.7451
    本文模型0.6350
    场景3对比模型0.75000.00360.93340.3629
    本文模型0.7536
    下载: 导出CSV

    表  4  两种模型在本文模型评价指标中的差异

    Table  4  Differences between two models in the model evaluation indicators of this paper

    规模组别评价指标均值平均值差t显著性
    场景1对比模型75.50003.51262.43480.0255*
    本文模型79.0126
    场景2对比模型73.45732.66942.20030.0411*
    本文模型76.1267
    场景3对比模型63.15731.97861.72060.1025
    本文模型65.1359
    下载: 导出CSV
  • [1] 陈杰, 方浩, 辛斌, 邓方. 数字化陆用武器系统中的建模、优化与控制. 自动化学报, 2013, 39(7): 943−962

    Chen Jie, Fang Hao, Xin Bin, Deng Fang. Modeling, optimization and control in ground-based digital weapon systems. Acta Automatica Sinica, 2013, 39(7): 943−962
    [2] 周天颜, 冯小恩, 范云锋, 董诗音, 李玉庆, 金慧中. 避免防空火力过剩的地面兵力防御部署优化模型. 空天防御, 2022, 5(4): 19−23 doi: 10.3969/j.issn.2096-4641.2022.04.003

    Zhou Tian-Yan, Feng Xiao-En, Fan Yun-Feng, Dong Shi-Yin, Li Yu-Qing, Jin Hui-Zhong. Optimization model of ground air defense force deployment to avoid excessive air defense firepower. Air & Space Defense, 2022, 5(4): 19−23 doi: 10.3969/j.issn.2096-4641.2022.04.003
    [3] 曹伟伟. 高寒山地防空火力配系研究. [硕士学位论文], 国防科技大学, 中国, 2019.

    Cao Wei-Wei. Study on Air Defense Fire Deployment in Alpine Mountain. [Master thesis], National University of Defense Technology, China, 2019.
    [4] 王凤山, 杨志宏, 郭子曜. 基于三维实景地图的智能兵力部署研究. 舰船电子工程, 2021, 41(10): 107−111 doi: 10.3969/j.issn.1672-9730.2021.10.024

    Wang Feng-Shan, Yang Zhi-Hong, Guo Zi-Yao. Research on intelligent force deployment based on 3D real map. Ship Electronic Engineering, 2021, 41(10): 107−111 doi: 10.3969/j.issn.1672-9730.2021.10.024
    [5] Bai X S, Fielbaum A, Kronmüller M, Knoedler L, Alonso-Mora J. Group-based distributed auction algorithms for multi-robot task assignment. IEEE Transactions on Automation Science and Engineering, 2023, 20(2): 1292−1303 doi: 10.1109/TASE.2022.3175040
    [6] Bai X S, Yan W S, G e, S S. Distributed task assignment for multiple robots under limited communication range. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(7): 4259−4271 doi: 10.1109/TSMC.2021.3094190
    [7] Li Y, Zhang X, Zhao J, Yang X Z, Xi M Y. Position deployment optimization of maneuvering conventional missile based on improved whale optimization algorithm. International Journal of Aerospace Engineering, 2022, 2022: Article No. 4373879
    [8] 温包谦, 王涛, 成坤, 张济众. 基于PSO-GA混合算法的末端防御兵力优化部署方法. 兵器装备工程学报, 2019, 40(11): 45−49 doi: 10.11809/bqzbgcxb2019.11.010

    Wen Bao-Qian, Wang Tao, Cheng Kun, Zhang Ji-Zhong. End-defense force optimization deployment method based on PSO-GA hybrid algorithm. Journal of Ordnance Equipment Engineering, 2019, 40(11): 45−49 doi: 10.11809/bqzbgcxb2019.11.010
    [9] Sun W, Cao Z, Wang G, Song Y F, Guo X K. An optimized double-nested anti-missile force deployment based on the deep kuhn-munkres algorithm. Mathematics, 2022, 10(23): Article No. 4627 doi: 10.3390/math10234627
    [10] 李珂铭, 李定主, 石昊. 基于改进NSGA-Ⅲ的抗饱和攻击防空编队部署方法. 火力与指挥控制, 2023, 48(4): 153−160 doi: 10.3969/j.issn.1002-0640.2023.04.024

    Li Ming-Ke, Li Ding-Zhu, Shi Hao. Deployment method of air defense formation against saturated attack based on improved NSGA-III. Fire Control & Command Control, 2023, 48(4): 153−160 doi: 10.3969/j.issn.1002-0640.2023.04.024
    [11] 岳韶华, 何晟, 王刚, 刘伟, 陈晨. 基于改进遗传蜂群算法的武器系统优化部署问题研究. 兵器装备工程学报, 2022, 43(8): 80−86 doi: 10.11809/bqzbgcxb2022.08.012

    Yue Shao-Hua, He Sheng, Wang Gang, Liu Wei, Chen Chen. Optimization of weapon system deployment based on improved genetic bee colony algorithm. Journal of Ordnance Equipment Engineering, 2022, 43(8): 80−86 doi: 10.11809/bqzbgcxb2022.08.012
    [12] 张伟, 黄卫民. 基于种群分区的多策略自适应多目标粒子群算法. 自动化学报, 2022, 48(10): 2585−2599

    Zhang Wei, Huang Wei-Min. Multi-strategy adaptive multi-objective particle swarm optimization algorithm based on swarm partition. Acta Automatica Sinica, 2022, 48(10): 2585−2599
    [13] 刘建华, 刘国买, 杨荣华, 胡文瑜. 粒子群算法的交互性与随机性分析. 自动化学报, 2012, 38(9): 1471−1484 doi: 10.3724/SP.J.1004.2012.01471

    Liu Jian-Hua, Liu Guo-Mai, Yang Rong-Hua, Hu Wen-Yu. Analysis of interactivity and randomness in particle swarm optimization. Acta Automatica Sinica, 2012, 38(9): 1471−1484 doi: 10.3724/SP.J.1004.2012.01471
    [14] 刘景森, 吉宏远, 李煜. 基于改进蝙蝠算法和三次样条插值的机器人路径规划. 自动化学报, 2021, 47(7): 1710−1719

    Liu Jing-Sen, Ji Hong-Yuan, Li Yu. Robot path planning based on improved bat algorithm and cubic spline interpolation. Acta Automatica Sinica, 2021, 47(7): 1710−1719
    [15] Shi K, Wu W D, Wu Z T, Jiang B P, Karimi H R. Coverage path planning for cleaning robot based on improved simulated annealing algorithm and ant colony algorithm. Signal Image and Video Processing, 2024, 18: 3275−3284 doi: 10.1007/s11760-023-02989-y
    [16] 刘健. 地空导弹火力单元配置间距计算方法. 弹箭与制导学报, 2007, 27(1): 393−395

    Liu Jian. A method to calculate the disposition interval of fire units under meeting shooting requests. Rockets,Missiles and Guidance, 2007, 27(1): 393−395
    [17] Xiong R, Wang S L, Huang Q, Yu C M, Fernandez C, Xiao W, et al. Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing-back propagation methods for state of health estimation of energy storage batteries. Energy, 2024, 292: Article No. 130594 doi: 10.1016/j.energy.2024.130594
    [18] Casorrán C, Fortz B, LabbéM, Ordóñez F. A study of general and security Stackelberg game formulations. European Journal of Operational Research, 2019, 278(3): 855−868 doi: 10.1016/j.ejor.2019.05.012
    [19] Bo L, Zhang Z, Liu Y, Yang S Q, Wang Y W, Wang Y Y, et al. Research on path planning method of solid backfilling and pushing mechanism based on adaptive genetic particle swarm optimization. Mathematics, 2024, 12(3): Article No. 479 doi: 10.3390/math12030479
    [20] Feng J X, Sun C L, Zhang J H, Du Y, Liu Z G, Di ng, Y M. A UAV path planning method in three-dimensional space based on a hybrid gray wolf optimization algorithm. Electronics, 2024, 13(1): Article No. 68
    [21] Chen C, Chen J, Xin B. Hybrid optimization of dynamic deployment for networked fire control system. Journal of Systems Engineering and Electronics, 2013, 24(6): 954−3961 doi: 10.1109/JSEE.2013.00112
    [22] 周宏宇, 王小刚, 单永志, 赵亚丽, 崔乃刚. 基于改进粒子群算法的飞行器协同轨迹规划. 自动化学报, 2022, 148(11): 2670−2676

    Zhou Hong-Yu, Wang Xiao-Gang, Shan Yong-Zhi, Zhao Ya-Li, Cui Nai-Gang. Synergistic path planning for multiple vehicles based on an improved particle swarm optimization method. Acta Automatica Sinica, 2022, 148(11): 2670−2676
  • 加载中
计量
  • 文章访问数:  17
  • HTML全文浏览量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-10
  • 录用日期:  2025-02-08
  • 网络出版日期:  2025-03-16

目录

    /

    返回文章
    返回