2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于域对抗自适应学习的旋翼无人机姿态稳定方法

李凤岐 金佳玉 杜学峰 张鑫 徐凤强 王德广

李凤岐, 金佳玉, 杜学峰, 张鑫, 徐凤强, 王德广. 基于域对抗自适应学习的旋翼无人机姿态稳定方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240186
引用本文: 李凤岐, 金佳玉, 杜学峰, 张鑫, 徐凤强, 王德广. 基于域对抗自适应学习的旋翼无人机姿态稳定方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240186
Li Feng-Qi, Jin Jia-Yu, Du Xue-Feng, Zhang Xin, Xu Feng-Qiang, Wang De-Guang. Domain adversarial adaptive learning based attitude stabilization method for rotary wing unmanned aerial vehicles. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240186
Citation: Li Feng-Qi, Jin Jia-Yu, Du Xue-Feng, Zhang Xin, Xu Feng-Qiang, Wang De-Guang. Domain adversarial adaptive learning based attitude stabilization method for rotary wing unmanned aerial vehicles. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240186

基于域对抗自适应学习的旋翼无人机姿态稳定方法

doi: 10.16383/j.aas.c240186 cstr: 32138.14.j.aas.c240186
基金项目: 辽宁省国际科技合作计划 (2022JH2/10700012), 辽宁省应用基础研究计划 (2023JH2/101300188, 2022JH2/101300269), 辽宁省教育厅基础研究项目 (JYTMS20230011), 辽宁省科研基金项目 (LJKQZ20222447)
详细信息
    作者简介:

    李凤岐:大连交通大学软件学院教授. 主要研究方向为区块链, 工业物联网和智能信息系统. 本文通信作者. E-mail: Fengqi-Li@outlook.com

    金佳玉:大连交通大学软件学院硕士研究生. 主要研究方向为无人机智能算法. E-mail: 15142212689@163.com

    杜学峰:大连交通大学机械工程学院博士研究生. 主要研究方向为无人机智能群集, 分布式协同控制. E-mail: xuefeng.du@outlook.com

    张鑫:大连交通大学软件学院硕士研究生. 研究方向为无人机智能算法. E-mail: zx8292@outlook.com

    徐凤强:大连海事大学软件学院博士. 主要研究方向为区块链和计算机视觉. E-mail: xfq@djtu.edu.cn

    王德广:大连交通大学软件学院副教授. 主要研究方向为信息安全, 机器学习. E-mail: wdg@djtu.edu.cn

Domain Adversarial Adaptive Learning Based Attitude Stabilization Method for Rotary Wing Unmanned Aerial Vehicles

Funds: Supported by International Science and Technology Cooperation Program of Liaoning Province (2022JH2/10700012), Applied Basic Research Program of Liaoning Province (2023JH2/101300188, 2022JH2/101300269), Basic Research Project of Liaoning Educational Department (JYTM S20230011), and Research Foundation of Liaoning Province (20230011, LJKQZ20222447)
More Information
    Author Bio:

    LI Feng-Qi Professor at the School of Software, Dalian Jiaotong University. His research interest covers blockchain, industrial internet of things and intelligent information systems. Corresponding author of this paper

    JIN Jia-Yu Master student at the School of Software, Dalian Jiaotong University. Her research interest covers UAVs intellient algorithm

    DU Xue-Feng Ph.D. candidate at the School of Mechanical Engineering, Dalian Jiaotong University. His research interest covers UAVs intelligent clustering and distributed collaborative control

    ZHANG Xin Master student at the School of Software, Dalian Jiaotong University. Her research interest covers UAVs intelligent algorithm

    XU Feng-Qiang Ph.D. candidate at the School of Software, Dalian Maritime University. His research interest covers blockchain and computer vision

    WANG De-Guang Associate professor at the School of Software, Dalian Jiaotong University. His research interest covers information security and machine learning

  • 摘要: 针对复杂海风环境下旋翼无人机 (Unmanned aerial vehicles, UAVs) 姿态控制不稳定的问题, 提出姿态稳定方法 SymTAL-POP (Symmetric temporal adversarial learning-partitioned online prediction). 该方法包括离线学习和在线预测两个部分. 在离线学习阶段, 引入对称式时序域对抗自适应学习算法 SymTAL. 结合域对抗学习、对称性网络和双向时序网络, SymTAL 有效解决海风环境中无人机姿态稳定问题. 利用深度学习优化加速框架和改进的 Adam 优化器, 提升 SymTAL 学习能力和计算效率. 在线预测阶段, 设计风场预测模型 POP, 实现海风环境实时感知与预测. POP 采用变分模态分解 (Vibration mode decomposition, VMD) 技术处理风速信号, 通过特征选择策略预测不同风况下的风速, 增强无人机环境适应能力. 测试结果表明, SymTAL 在学习效率和控制精度方面均优于其他姿态稳定算法, POP 在连续风、间歇风和湍流风的多风况条件下的预测精度优于其他模型. 仿真实验验证 SymTAL-POP 在轨迹跟踪误差上表现突出, 平均误差降低 23.5%, 均方根误差减少 55%.
  • 图  1  风场概念图

    Fig.  1  Wind field concept map

    图  2  无人机抗风自适应总体框架图

    Fig.  2  Overall framework diagram of UAVs wind resistance adaptation

    图  3  对抗损失 Loss_c

    Fig.  3  Against loss (Loss_c)

    图  4  预测力损失Loss_f

    Fig.  4  Predict loss (Loss_f)

    图  5  抗风算法学习损失对比

    Fig.  5  Comparison of learning loss of anti-wind algorithms

    图  6  风速预测结果

    Fig.  6  Wind speed prediction results

    图  7  抗风算法跟踪误差

    Fig.  7  Wind resistance algorithm tracking error

    表  1  Loss_f 值分析表

    Table  1  Loss_f value analysis table

    方法 收敛轮次 (轮) 收敛值 运行时间 (s)
    Loss_f $ \text{N} $-$ \text{F} $ 150 $ 0.8638 \pm 0.044 $ $ 149.2 \pm 1.37 $
    SymTAL 160 $ 0.4818 \pm 0.045 $ $ 116.6 \pm 1.15 $
    下载: 导出CSV

    表  2  连续风场算法性能比较

    Table  2  Performance comparison of continuous wind field algorithms

    评估指标 cnn - lstm[40] vmd-am-lstm vmd-cnn[41] vmd-cnn-lstm[42] vmd-gru[43] vmd-lstm vmd-tcn-lstm POP(ours)
    MSEMean0.06530.06540.05960.06180.06250.05450.0616$ {\boldsymbol{0 . 0 5 1 9}} $
    SD0.04900.04900.04000.04200.04600.03900.0390$ {\boldsymbol{0 . 0 2 80}} $
    MAEMean0.19990.20000.19140.19550.19540.18270.1954$ {\boldsymbol{0 . 1 7 5 2}} $
    SD0.08010.08040.06940.07270.07620.06730.0679$ {\boldsymbol{0 . 0 5 0 8}} $
    RMSEMean0.24340.24350.23460.23840.23880.22430.2391$ {\boldsymbol{0 . 2 1 9 4}} $
    SD0.07800.07800.06700.07000.07400.06500.0660$ {\boldsymbol{0 . 0 5 00}} $
    MAPEMean66.937366.192461.298061.047563.0942$ {\boldsymbol{5 1 . 9 1 7 7}} $65.228556.0368
    SD23.014022.006017.574017.063019.845015.665019.3100$ {\boldsymbol{9 . 1 5 50}} $
    MAXEMean0.64910.64160.64210.64440.64130.64180.6481$ {\boldsymbol{0 . 6 1 0 6}} $
    SD0.11200.11000.11000.10900.10900.10900.1051$ {\boldsymbol{0 . 0 9 60}} $
    AREMean0.61630.64410.64910.55580.63300.63400.6116$ {\boldsymbol{0 . 5 4 0 6}} $
    SD0.18100.20200.21100.08500.20200.20500.1540$ {\boldsymbol{0 . 0 7 80}} $
    下载: 导出CSV

    表  3  间歇风风场算法性能比较

    Table  3  Performance comparison of intermittent wind field algorithms

    评估指标 cnn-lstm[40] vmd-am-lstm vmd-cnn[41] vmd-cnn-lstm[42] vmd-gru[43] vmd-lstm vmd-tcn-lstm POP(ours)
    MSEMean0.04820.05140.05210.04650.05300.04970.0514$ {\boldsymbol{0 . 0 4 4 9}} $
    SD0.02200.02700.03400.01800.02300.02300.0180$ {\boldsymbol{0 . 0 1 40}} $
    MAEMean0.17560.17230.17470.17120.17480.17030.1703$ {\boldsymbol{0 . 1 5 7 4}} $
    SD0.04610.05310.05690.04360.04480.04480.0375$ {\boldsymbol{0 . 0 2 3 9}} $
    RMSEMean0.22420.21850.22160.21910.22560.21540.2231$ {\boldsymbol{0 . 1 9 4 4}} $
    SD0.04700.05000.05400.04400.04500.04500.0410$ {\boldsymbol{0 . 0 1 50}} $
    MAPEMean66.310873.116772.469768.695664.579872.091859.1044$ {\boldsymbol{5 8 . 5 4 1 8}} $
    SD25.331032.797033.599026.133024.647030.289014.5280$ {\boldsymbol{1 2 . 1 3 50}} $
    MAXEMean0.7156$ {\boldsymbol{0 . 6 8 4 3}} $0.69260.70320.73550.70390.75370.6882
    SD0.11300.09700.10600.10700.10800.10400.1014$ {\boldsymbol{0 . 0 6 30}} $
    AREMean0.68430.73120.73430.68700.67440.72090.5910$ {\boldsymbol{0 . 5 8 5 4}} $
    SD0.26200.32800.34800.26100.25500.30300.1452$ {\boldsymbol{0 . 1 2 10}} $
    下载: 导出CSV

    表  4  湍流风风场算法性能比较

    Table  4  Turbulent wind field algorithms

    评估指标 cnn-lstm[40] vmd-am-lstm vmd-cnn[41] vmd-cnn-lstm[42] vmd-gru[43] vmd-lstm vmd-tcn-lstm POP(ours)
    MSEMean0.27990.29740.27600.27410.29430.29660.2966$ {\boldsymbol{0 . 2 4 9 4}} $
    SD0.09500.07200.07400.08200.07200.07700.0770$ {\boldsymbol{0 . 0 6 90}} $
    MAEMean0.39630.40640.40720.39650.40830.41170.4038$ {\boldsymbol{0 . 3 4 8 2}} $
    SD0.06050.05810.06110.06180.06160.06220.0631$ {\boldsymbol{0 . 0 1 2 5}} $
    RMSEMean0.52150.52830.53340.50850.53460.53370.5337$ {\boldsymbol{0 . 4 7 4 2}} $
    SD0.08900.06700.07200.07800.07200.07300.0680$ {\boldsymbol{0 . 0 4 60}} $
    MAPEMean
    SD
    MAXEMean0.82680.86100.84820.82610.87600.87740.8700$ {\boldsymbol{0 . 7 6 1 4}} $
    SD0.14200.12400.13100.14400.12300.13000.1080$ {\boldsymbol{0 . 0 7 10}} $
    AREMean
    SD
    下载: 导出CSV

    表  5  抗风算法的平均位置误差 (cm)

    Table  5  The average position error of wind resistance algorithm (cm)

    风速 N-T N-MPC INDI L1-A S-P
    (km/h) 误差 误差 误差 误差 误差
    0 10.8 4.5 6.8 4.2 2.9
    15 13.6 7.6 8.1 11.1 4.1
    30 22.6 11.3 10.3 21.4 8.7
    45 34.7 16.7 12.6 28.6 8.9
    下载: 导出CSV

    表  6  抗风算法可控范围风速等级

    Table  6  Wind resistance algorithm controllable range wind speed level

    方法 无风
    $ (0\sim1 $ 级$ ) $
    微风
    $ (2\sim3 $ 级$ ) $
    劲风
    $ (4\sim5 $级 $ ) $
    强风
    $ (>5 $级$ ) $
    N-T
    N-MPC
    INDI
    L1-A
    S-P
    下载: 导出CSV

    表  7  高度与风速的关系

    Table  7  Relationship between height and wind speed

    高度 $ (\text{m}) $ 风速 $ (\text{m} / \text{s}) $
    10 6.16
    20 6.97
    30 7.50
    50 8.23
    60 8.50
    70 8.74
    80 8.95
    90 9.14
    100 9.32
    110 9.48
    120 9.63
    下载: 导出CSV
  • [1] Yang T, Jiang Z, Sun R, Nan C, Feng H. Maritime search and rescue based on group mobile computing for unmanned aerial vehicles and unmanned surface vehicles. IEEE Transactions on Industrial Informatics, DOI: 10.1109/TII.2020.2974047.55
    [2] Zhang Y, Lyu J, Fu L. Energy–efficient trajectory design for UAV–aided maritime data collection in wind. IEEE Transactions on Wireless Communications, 2022, 21(12): 10871−10886 doi: 10.1109/TWC.2022.3187954
    [3] Li J, Zhang G, Jiang C, Zhang W. A survey of maritime unmanned search system: Theory, applications and future directions. Ocean Engineering, DOI: 10.1016/j.oceaneng.2023.115359
    [4] Lee J, Ryu S, Kim H J. Stable flight of a flapping–wing micro air vehicle under wind disturbance. IEEE Robotics and Automation letters, DOI: 10.1109/LRA.2020.3009064
    [5] Sorbelli F B, Corò F, Das S K, Pinotti C M. Energy–constrained delivery of goods with drones under varying wind conditions. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(9): 6048−6060
    [6] 朱贺, 聂虹, 张利茂, 魏晓慧, 张明, 等. 具有改进的气动效率和性能的八旋翼无人机的设计和评估. 航空科学与技术, 2020, 106: 106206

    Z hu, H e, Hong Nie, Limao Zhang, Xiao Hui Wei and M. Zhang. Design and assessment of octocopter drones with improved aerodynamic efficiency and performance. Aerospace Science and Technology, 2020, 106: 106206
    [7] Zuo Z, Liu C, Han Q L, Song J. Unmanned aerial vehicles: Control methods and future challenges. IEEE/CAA Journal of Automatica Sinica, 2022, 9(4): 601−614 doi: 10.1109/JAS.2022.105410
    [8] Hong D, Lee S, Cho Y H, Baek D, Kim J, Chang Y. Energy–efficient online path planning of multiple drones using reinforcement learning. IEEE Transactions on Vehicular Technology, 2021, 70(10): 9725−9740 doi: 10.1109/TVT.2021.3102589
    [9] 王诗章, 鲜斌, 杨森. 无人机吊挂飞行系统的减摆控制设计. 自动化学报, 2018, 44(10): 1771−1780

    Wang Shi–Zhang, Xian Bin, Yang Sen. Vibration reduction control design for unmanned aerial vehicle suspension flight systems. Acta Automatica Sinica, 2018, 44(10): 1771−1780
    [10] 李繁飙, 杨皓月, 王鸿鑫, 阳春华, 廖力清. 基于干扰估计的非对称运动下飞机刹车系统模型预测控制. 自动化学报, 2022, 48(7): 1690−1703

    Li Fan–Biao, Yang Hao–Yue, Wang Hong–Xin, Yang Chun–Hua, Liao Li–Qing. Model predictive control for aircraft braking system uner asymmetric motion based on disturbance estimation. Acta Automatica Sinica, 2022, 48(7): 1690−1703
    [11] 李向阳, 哀薇, 田森平. 惯性串联系统的自抗扰控制. 自动化学报, 2018, 44(3): 562−568

    Li Xiang–Yang, Ai Wei, Tian Sen–Pin. Self–anti–disturbance control for inertial serial chains. Acta Automatica Sinica, 2018, 44(3): 562−568
    [12] Sziroczak D, Rohacs D, Rohacs J. Review of using small UAV based meteorological measurements for road weather management. Progress in Aerospace Sciences, 2022, 134: 100859 doi: 10.1016/j.paerosci.2022.100859
    [13] Xue J, Liu Z, Liu G, Zhou Z, Zhang K, Tang Y, et al. Robust wind–resistant hovering control of quadrotor UAVs using deep reinforcement learning. IEEE Transactions on Intelligent Vehicles, DOI: 10.1109/TIV.2023.3324687
    [14] Song Y, Scaramuzza D. Policy search for model predictive control with application to agile drone flight. IEEE Transactions on Robotics, 2022, 38(4): 2114−2130 doi: 10.1109/TRO.2022.3141602
    [15] Li JQ, Guo QZ, Chang YJ, Wei DZ. A survey of maritime unmanned search system: Theory, applications and future directions. Ocean Engineering, DOI: 10.1016/j.oceaneng.2023.115359
    [16] Zha WT, Liu J, Li Y, Liang Y. Ultra–short–term power forecast method for the wind farm based on feature selection and temporal convolution network. ISA transactions, 2022, 129: 405−414 doi: 10.1016/j.isatra.2022.01.024
    [17] Tagliabue A, Paris A, Kim S, Kubicek R, Bergbreiter S, How jp touch the wind: Simultaneous airflow, drag and interaction sensing on a multirotor. In: Proceedings of the International Conference on Intelligent Robots and Systems. Las Vegas, NV, USA: IEEE, 2020. 1645–1652
    [18] Bisheban M, Lee T. Geometric adaptive control with neural networks for a quadrotor in wind fields. IEEE Transactions on Control Systems Technology, 2021, 29(4): 1533−1548 doi: 10.1109/TCST.2020.3006184
    [19] Shi G, Honig W, Shi X, Yue Y, Chung SJ. Neural–swarm2: Planning and control of heterogeneous multirotor swarms using learned interactions. IEEE Transactions on Robotics, 2022, 38(2): 1063−1079 doi: 10.1109/TRO.2021.3098436
    [20] Michael O, Guanya S, Xichen S, Kamyar A, Anima A, Yisong Y, et al. Neural–fly enables rapid learning for agile flight in strong winds. Science Robotics, DOI: 10.1126/scirobotics.abm6597
    [21] Sun Q, Liu Y, Yang H, Jiang Z, Luan Z, Qian D. Adaptive auto–tuning framework for global exploration of stencil optimization on gpus. IEEE Transactions on Parallel and Distributed Systems, 2024, 35(1): 20−33 doi: 10.1109/TPDS.2023.3325630
    [22] Kim B, Chung K, Lee J, Seo J, Koo MW. A Bi–LSTM memory network for end–to–end goal–oriented dialog learning. Computer Speech & Language, 2019, 53: 217−230
    [23] Ma C, Dai G, Zhou J. Short–term traffic flow prediction for urban road sections based on time series analysis and Lstm Bilstm method. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5615−5624 doi: 10.1109/TITS.2021.3055258
    [24] Guo K, Wang N, Liu D, Peng X. Uncertainty–aware LSTM based dynamic flight fault detection for UAV actuator. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1−13
    [25] Samadianfard S, Hashemi S, Kargar K, Izadyar M, Mostafaeipour A, Mosavi A, et al. Wind speed prediction using a hybrid model of the multi–layer perceptron and whale optimization algorithm. Energy Reports, 2020, 6: 1147−1159 doi: 10.1016/j.egyr.2020.05.001
    [26] Dhakal R, Yosfovand M, Prasai S, Sedai A, Pol S, Parameswaran S, et al. Deep learning model with probability density function and feature engineering for short term wind speed prediction. In: Proceedings of the 2022 North American Power Symposium (NAPS). Salt Lake City, USA: IEEE, 2022. 145–146
    [27] Filippini F, Lattuada M, Ciavotta M, Jahani A, Ardagna D, Amaldi E. A path relinking method for the joint online scheduling and capacity allocation of DL training workloads in GPU as a Service systems. IEEE Transactions on Services Computing, 2022, 16(3): 1630−1646
    [28] You Y, Li J, Reddi S, Hseu J, Kumar S, Bhojanapalli S, et al. Large batch optimization for deep learning: Training bert in 76 minutes. arXiv: 1904.00962, 2019.
    [29] Zhang W, Jiang Y, Dong J, Song X, Pang R, Guoan B, et al. A deep learning method for real–time bias correction of wind field forecasts in the Western North Pacific. Atmospheric Research, 2023, 284: 106586 doi: 10.1016/j.atmosres.2022.106586
    [30] Liu Y, Wang H, Fan J, Wu J, Wu T, et al. Control–oriented UAV highly feasible trajectory planning: A deep learning method. Aerospace Science and Technology, 2021, 110: Article No. 106435 doi: 10.1016/j.ast.2020.106435
    [31] Ma T, Zhou H, Qian B, Fu A. A large–scale clustering and 3D trajectory optimization approach for UAV swarms. Science China Information Sciences, 2021, 64: 1−16
    [32] Lv L, Wu Z, Zhang J, Zhang L, Tan Z, Tian Z. A VMD and LSTM based hybrid model of load forecasting for power grid security. IEEE Transactions on Industrial Informatics, 2021, 18(9): 6474−6482
    [33] Dudukcu H V, Taskiran M, Taskiran Z G C, Yildirim T. Temporal convolutional networks with RNN approach for chaotic time series prediction. Applied Soft Computing, 2023, 133: Article No. 109945 doi: 10.1016/j.asoc.2022.109945
    [34] Zhang K, Cao H, Thé J, Yu H. A hybrid model for multi–step coal price forecasting using decomposition technique and deep learning algorithms. Applied Energy, 2022, 306: Article No. 118011 doi: 10.1016/j.apenergy.2021.118011
    [35] Zhang W, Jiang Y, Dong J, Song X, Pang R, Guoan B, Yu H. A deep learning method for real–time bias correction of wind field forecasts in the Western North Pacific. Atmospheric Research, DOI: 10.1016/j.atmosres.2022.106586
    [36] Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv: 1803.01271, 2018
    [37] Sikkel LNC, De C, De W, Chu Q. A novel online model–based wind estimation approach for quadrotor micro air vehicles using low cost MEMS IMUs. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, Korea (South): IEEE, 2016. 2141–2146
    [38] Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, et al. Domain–adversarial training of neural networks. Journal of Machine Learning Research, 2017, 17: Article No.2096
    [39] Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long–run statistical dependence. Water Resources Research, 1969, 5(5): 967−988 doi: 10.1029/WR005i005p00967
    [40] Lu C, Wang Z, Wu Z, Zheng Y, Liu Y. Global ocean wind speed retrieval from GNSS reflectometry using CNN–LSTM Network. IEEE Transactions on Geoscience and Remote Sensing, 2023, 67: 1−12
    [41] He N, Yang Z, Qian C. A lithium–ion battery RUL prediction method based on improved variational modal decomposition and integrated depth model. In: Proceedings of the 35th Chinese Control and Decision Conference. Virtual Event: IEEE, 2023. 1268–1273
    [42] Tao J J, Zhou J, Tao Y Q, Zhang H L, Xu J, Hu Y Q. Time series updating forecasting method of energy consumption based on VMD–LSTM. In: Proceedings of the 5th Conference on Energy Internet and Energy System Integration (EI2). Virtual Event: IEEE, 2021. 3604–3609
    [43] Wang K, Zhang H, Wang X, Li Q. Prediction method of transformer top oil temperature based on VMD and GRU neural network. In: Proceedings of the International Conference on High Voltage Engineering and Application (ICHVE). Virtual Event: IEEE, 2020. 1–4
    [44] Gilbert E, Kolmanovsky I. Nonlinear tracking control in the presence of state and control constraints: A generalized reference governor. Automatica, 2002, 38(12): 2063−2073 doi: 10.1016/S0005-1098(02)00135-8
    [45] Kamel M, Burri M, Siegwart R. Linear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehicles. IFAC–PapersOnLine, 2017, 50(1): 3463−3469
    [46] Tal E, Karaman S. Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness. IEEE Transactions on Control Systems Technology, 2021, 29(3): 1203−1218 doi: 10.1109/TCST.2020.3001117
    [47] Jintasit P, Ackerman K A, Cao C Y, Hovakimyan N, Theodorou E A. L1–Adaptive MPPI architecture for robust and agile control of multirotors. In: Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Virtual Event: IEEE, 2020. 7661–7666
    [48] Liu Y, Li S, Chan P W, Chen D. Empirical correction ratio and scale factor to project the extreme wind speed profile for offshore wind energy exploitation. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1030−1040 doi: 10.1109/TSTE.2017.2759666
    [49] Solano J C, Montano T, Maldonado–Correa J, Ordonez A, Pesantez M. Correlation between the wind speed and the elevation to evaluate the wind potential in the southern region of Ecuador. Energy Reports, 2021, 7: 259−268 doi: 10.1016/j.egyr.2021.06.044
  • 加载中
计量
  • 文章访问数:  20
  • HTML全文浏览量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 录用日期:  2025-02-08
  • 网络出版日期:  2025-03-23

目录

    /

    返回文章
    返回