2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不同故障传播路径差异化的故障诊断方法

谭帅 王一帆 姜庆超 侍洪波 宋冰

谭帅, 王一帆, 姜庆超, 侍洪波, 宋冰. 基于不同故障传播路径差异化的故障诊断方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240151
引用本文: 谭帅, 王一帆, 姜庆超, 侍洪波, 宋冰. 基于不同故障传播路径差异化的故障诊断方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240151
Tan Shuai, Wang Yi-Fan, Jiang Qing-Chao, Shi Hong-Bo, Song Bing. Fault propagation path-aware network: A fault diagnosis method. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240151
Citation: Tan Shuai, Wang Yi-Fan, Jiang Qing-Chao, Shi Hong-Bo, Song Bing. Fault propagation path-aware network: A fault diagnosis method. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240151

基于不同故障传播路径差异化的故障诊断方法

doi: 10.16383/j.aas.c240151
基金项目: 国家自然科学基金(62273147), 上海市自然科学基金(22ZR1417000)资助
详细信息
    作者简介:

    谭帅:华东理工大学副教授. 2012年获得东北大学博士学位. 主要研究方向为复杂过程运行状态评价及故障诊断, 多源数据融合.本文通信作者. E-mail: tanshuai@ecust.edu.cn

    王一帆:2024年获得华东理工大学硕士学位. 主要研究方向故障检测与诊断. E-mail: fan@mail.ecust.edu.cn

    姜庆超:华东理工大学教授. 2015年获得华东理工大学博士学位. 主要研究方向为复杂过程建模与状态监测、机器视觉与图像处理. E-mail: qchjiang@ecust.edu.cn

    侍洪波:华东理工大学教授. 2000年获得华东理工大学博士学位. 主要研究方向为安全环境足迹监控, 溯源诊断. E-mail: hbshi@ecust.edu.cn

    宋冰:华东理工大学副教授. 2017年获得华东理工大学博士学位. 主要研究方向为故障诊断, 智能监控. E-mail: songbing@ecust.edu.cn

Fault Propagation Path-aware Network: A Fault Diagnosis Method

Funds: Supported by the National Natural Science Foundation of China (62273147) and Shanghai Natural Science Foundation (22ZR1417000)
More Information
    Author Bio:

    TAN Shuai Associate professor at East China University of Science and Technology. She received her Ph.D. degree from Northeastern University in 2012. Her research interest covers complex process operation state evaluation and fault diagnosis, multi-source data fusion. Corresponding author of this paper

    WANG Yi-Fan She received her master degree from East China University of Science and Technology in 2024. Her research interest covers fault detection and diagnosis

    JIANG Qing-Chao Professor at East China University of Science and Technology. He received his Ph.D. degree from East China University of Science and Technology in 2015. His research interest covers complex process modeling and condition monitoring, machine vision and image processing

    SHI Hong-Bo Professor at East China University of Science and Technology. He received his Ph.D. degree from East China University of Science and Technology in 2000. His research interest covers security and environmental footprint monitoring, traceability and diagnosis

    SONG Bing Associate professor at East China University of Science and Technology. He received his Ph.D. degree from East China University of Science and Technology in 2017. His research interest covers fault diagnosis and intelligent monitoring

  • 摘要: 针对工业过程中故障发生源与故障信息在传播过程中的差异性问题, 提出了一种基于不同故障传播路径差异化的故障诊断方法. 该方法分别从故障源邻域信息关系和故障信息传播两个角度出发, 设计了基于k近邻筛选和基于剪枝的k跳可达路径选择的两种故障源图的构建方式, 构建“故障源图”. 从故障在变量间的差异化表现着手, 将基于特征的分类问题转换为基于结构关系的图匹配问题, 利用该结构化信息优化过程特征, 提升模型故障诊断性能. 最后, 通过田纳西−伊斯曼过程和某海底盾构掘进施工过程进行仿真验证, 实验结果证明了所提方法的有效性.
  • 图  1  FPPAN的网络结构

    Fig.  1  Network architecture of FPPAN

    图  2  k-NN故障源图构建过程

    Fig.  2  Construction process of k-NN fault source graph

    图  3  k-PHop故障源图构建过程

    Fig.  3  Construction process of k-PHop fault source graph

    图  4  故障1的故障源图

    Fig.  4  Fault source graphs for fault 1

    图  5  故障4的故障源图

    Fig.  5  Fault source graphs for fault 4

    图  6  故障11的故障源图

    Fig.  6  Fault source graphs for fault 11

    图  7  故障4的传播路径

    Fig.  7  Propagation path for fault 4

    图  8  不同k值下的FPPAN-k-NN的性能

    Fig.  8  Performance of FPPAN-k-NN with different k values

    图  9  不同k值和p值下的FPPAN-k-PHop的性能

    Fig.  9  Performance of FPPAN-k-PHop with different k values and p values

    图  10  不同ρ值下的FPPAN的性能

    Fig.  10  Performance of FPPAN with different ρ values

    图  11  盾构机内部结构示意图

    Fig.  11  Schematic diagram of the internal structure of shield tunneling machine

    图  12  故障1的故障源图

    Fig.  12  Fault source graphs for fault 1

    表  1  TE过程故障信息

    Table  1  Fault information for the TE process

    序号 故障描述 类型
    1 A/C进料流量比值变化, B含量不变 阶跃
    2 B含量变量, A/C进料流量比值不变 阶跃
    3 物料D温度发生变化 阶跃
    4 反应器冷却水入口温度变化 阶跃
    5 冷凝器冷却水入口温度变化 阶跃
    6 物料A损失 阶跃
    7 物料C压力损失 阶跃
    8 物料A、B、C的组成成分变化 随机
    9 D进料温度变化 随机
    10 C进料温度变化 随机
    11 反应器冷却水入口温度变化 随机
    12 冷凝器冷却水入口温度变化 随机
    13 反应器动力学常数变化 缓慢漂移
    14 反应器冷却水阀门 粘滞
    15 冷凝器冷却水阀门 粘滞
    下载: 导出CSV

    表  2  不同方法在TE过程上的故障诊断表现

    Table  2  Fault diagnosis performance of different methods on TE process

    序号PCA + LDASVMDCNNGCNGATPTCNIAGNN-CONIAGNN-ATFPPAN-k-NNFPPAN-k-PHop
    11.0001.0000.9970.9730.9831.0000.9600.8801.0001.000
    21.0001.0001.0000.8641.0001.0000.9870.9971.0001.000
    30.1030.5410.4390.3550.3620.3290.2800.3190.3310.561
    40.7471.0000.9970.9970.9631.0000.9170.9531.0001.000
    50.5470.9380.9700.6130.2400.9630.3460.4520.9750.961
    61.0001.0001.0000.9731.0001.0001.0001.0001.0001.000
    71.0001.0001.0000.6780.9241.0000.9600.9831.0001.000
    80.4640.6130.6740.2430.4520.6810.4650.4750.7310.728
    90.1390.1590.0730.2060.0210.0500.3420.2130.1990.262
    100.0840.0470.7920.3520.4720.4980.5080.3750.8270.694
    110.0460.2840.9670.9670.7810.9770.9600.9701.0001.000
    120.2690.8530.7140.5950.6640.8670.6310.6710.8830.869
    130.4500.3620.6210.1730.0110.7940.0900.1230.7110.739
    140.0580.9971.0001.0001.0000.9671.0001.0001.0001.000
    150.1510.1770.2120.2760.1933010.2820.2790.3120.196
    平均值0.4710.6650.7640.6180.6040.7620.6490.6460.7980.801
    下载: 导出CSV

    表  3  盾构施工故障信息

    Table  3  Fault information for the shield tunneling construction

    序号 故障描述
    1 刀盘结泥饼
    2 泥浆管路漏浆
    3 刀盘驱动故障
    4 推进系统故障
    下载: 导出CSV

    表  4  不同方法在盾构施工上的故障诊断表现

    Table  4  Fault diagnosis performance of different methods for the shield tunneling construction

    序号PCA + LDASVMDCNNGCNGATPTCNIAGNN-CONIAGNN-ATFPPAN-k-NNFPPAN-k-PHop
    10.8531.0001.0000.7510.9761.0000.8350.9231.0001.000
    20.7410.8021.0000.6640.9361.0000.7850.8891.0001.000
    30.5790.6310.9310.8750.7560.9440.8230.8451.0001.000
    40.6010.6290.9000.5200.8920.9610.7170.8030.9940.996
    平均值0.6940.7700.9580.7030.8900.9760.7900.8650.9990.999
    下载: 导出CSV
  • [1] Ge Z Q. Review on data-driven modeling and monitoring for plant-wide industrial processes. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 16−25 doi: 10.1016/j.chemolab.2017.09.021
    [2] Yu J B, Zhang Y. Challenges and opportunities of deep learning-based process fault detection and diagnosis: a review. Neural Computing & Applications, 2023, 35(1): 211−252
    [3] 马亮, 彭开香, 董洁. 工业过程故障根源诊断与传播路径识别技术综述. 自动化学报, 2022, 48(7): 1650−1663

    Ma Liang, Peng Kai-Xiang, Dong Jie. Review of root cause diagnosis and propagation path identification techniques for faults in industrial processes. Acta Automatica Sinica, 2022, 48(7): 1650−1663
    [4] Huo M Y, Luo H, Cheng C, Li K, Yin S, Kaynak O, et al. Subspace-aided sensor fault diagnosis and compensation for industrial systems. IEEE Transactions on Industrial Electronics, 2023, 70(9): 9474−9482 doi: 10.1109/TIE.2022.3215823
    [5] Tao Y, Shi H B, Song B, Tan S. A supervised multisegment probability density analysis method for incipient fault detection of quality indicator. Journal of Process Control, 2022, 116: 53−63 doi: 10.1016/j.jprocont.2022.04.006
    [6] Yang G, Zhao Y L, Gu X H. A novel Bayesian framework with enhanced principal component analysis for chemical fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1−9
    [7] Yu J B. Local and global principal component analysis for process monitoring. Journal of Process Control, 2012, 22(7): 1358−1373 doi: 10.1016/j.jprocont.2012.06.008
    [8] Drucker H, Burges C, Kaufman L, Smola A, Vapnik V. Support vector regression machines. In: Proceedings of the 9th International Conference on Neural Information Processing Systems. Cambridge, USA, 1997. 155−161
    [9] Si Y B, Wang Y Q, Zhou D H. Key-performance-indicator-related process monitoring based on improved kernel partial least squares. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2626−2636 doi: 10.1109/TIE.2020.2972472
    [10] Yan T T, Wang D, Wang Y. Discrimination- and sparsity-driven weight-oriented optimization model for interpretable initial fault detection and fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 1−13
    [11] Zhou K, Tong Y F, Li X T. Exploring global attention mechanism on fault detection and diagnosis for complex engineering processes. Process Safety and Environmental Protection, 2023, 170: 660−669 doi: 10.1016/j.psep.2022.12.055
    [12] Li C J, Li S B, Wang H, Gu F H, Ball D A. Attention-based deep meta-transfer learning for few-shot fine-grained fault diagnosis. Knowledge-based systems, 2023, 264: 110345 doi: 10.1016/j.knosys.2023.110345
    [13] Wu H, Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis. Computers & Chemical Engineering, 2018, 115: 185−197
    [14] Chen S M, Yu J, Wang S. One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes. Journal of Process Control, 2020, 87: 54−67 doi: 10.1016/j.jprocont.2020.01.004
    [15] Yu F, Liu J C, Liu D M, Wang H H. Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104200 doi: 10.1016/j.jtice.2021.104200
    [16] Li Y X, Chai Y, Yin H P. Autoencoder embedded dictionary learning for nonlinear industrial process fault diagnosis. Journal of Process Control, 2021, 101: 24−34 doi: 10.1016/j.jprocont.2021.02.002
    [17] Gao Y P, Gao L, Li X Y, Cao S Y. A hierarchical training-convolutional neural network for imbalanced fault diagnosis in complex equipment. IEEE transactions on industrial informatics, 2022, 18(11): 8138−8145 doi: 10.1109/TII.2022.3177662
    [18] Wu D Y, Zhao J S. Process topology convolutional network model for chemical process fault diagnosis. Process Safety and Environmental Protection, 2021, 150: 93−109 doi: 10.1016/j.psep.2021.03.052
    [19] Wu P, Wang Y X, Gao J F, Zhang X J, Luo S W, Yang C J. Multichannel dynamic graph convolutional network-based fault diagnosis and its application in blast furnace ironmaking process. IEEE Sensors Journal, 2023, 23(23): 29293−29302 doi: 10.1109/JSEN.2023.3325353
    [20] Wan W Q, Chen J L, Xie J S. MIM-Graph: A multi-sensor network approach for fault diagnosis of HSR Bogie bearings at the IoT edge via mutual information maximization. ISA Transactions, 2023, 139: 574−585 doi: 10.1016/j.isatra.2023.04.033
    [21] Chen D Y, Liu R N, Hu Q H, Ding S X. Interaction-aware graph neural networks for fault diagnosis of complex industrial processes. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(9): 6015−6028
    [22] 尹进田, 谢永芳, 陈志文, 彭涛, 杨超. 基于故障传播与因果关系的故障溯源方法及其在牵引传动控制系统中的应用. 自动化学报, 2020, 46(1): 47−57

    Yin Jin-Tian, Xie Yong-Fang, Chen Zhi-Wen, Peng Tao, Yang Chao. Fault tracing method based on fault propagation and causality with its application to the traction drive control system. Acta Automatica Sinica, 2020, 46(1): 47−57
    [23] Zhu Q X, Luo Y, He Y L. Novel multiblock transfer entropy based Bayesian network and its application to root cause analysis. Industrial & Engineering Chemistry Research, 2019, 58(12): 4936−4945
    [24] 唐鹏, 彭开香, 董洁. 一种新颖的深度因果图建模及其故障诊断方法. 自动化学报, 2022, 48(6): 1616−1624

    Tang Peng, Peng Kai-Xiang, Dong Jie. A novel method for deep causality graph modeling and fault diagnosis. Acta Automatica Sinica, 2022, 48(6): 1616−1624
    [25] Wang S, Zhao Q, Han Y H, Wang J k. Root cause diagnosis for process faults based on multisensor time-series causality discovery. Journal of Process Control, 2023, 122(9): 27−40
    [26] Dong J, Cao K R, Peng K X. Hierarchical causal graph-based fault root cause diagnosis and propagation path identification for complex industrial process monitoring. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Artixle No. 3513911
    [27] Zhang H J, Peng K X, Ma L. A systematic nonstationary causality analysis framework for root cause diagnosis of faults in manufacturing processes. Control Engineering Practice, 2023, 131: Artixle No.105404 doi: 10.1016/j.conengprac.2022.105404
    [28] Ma L, Dong J, Peng K X. A novel key performance indicator oriented hierarchical monitoring and propagation path identification framework for complex industrial processes. ISA Transactions, 2020, 96: 1−13 doi: 10.1016/j.isatra.2019.06.004
    [29] Xu K, Hu W H, Leskovec J, et al. How powerful are graph neural networks. In: Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA, 2019. arXiv: 1810.00826
    [30] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, France, 2017. arXiv: 1609.02907
    [31] Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018. arXiv: 1710.10903
    [32] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, USA, 2017. 1025−1035
    [33] Downs J J, Vogel E F. A plant-wide industrial process control problem. Computers & Chemical Engineering, 1993, 17(3): 245−255
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 录用日期:  2024-08-07
  • 网络出版日期:  2024-09-10

目录

    /

    返回文章
    返回