2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度长尾学习研究综述

韩佳艺 刘建伟 陈德华 徐璟东 代琪 夏鹏飞

韩佳艺, 刘建伟, 陈德华, 徐璟东, 代琪, 夏鹏飞. 深度长尾学习研究综述. 自动化学报, 2025, 51(5): 1−36 doi: 10.16383/j.aas.c240077
引用本文: 韩佳艺, 刘建伟, 陈德华, 徐璟东, 代琪, 夏鹏飞. 深度长尾学习研究综述. 自动化学报, 2025, 51(5): 1−36 doi: 10.16383/j.aas.c240077
Han Jia-Yi, Liu Jian-Wei, Chen De-Hua, Xu Jing-Dong, Dai Qi, Xia Peng-Fei. Survey on deep long-tailed learning. Acta Automatica Sinica, 2025, 51(5): 1−36 doi: 10.16383/j.aas.c240077
Citation: Han Jia-Yi, Liu Jian-Wei, Chen De-Hua, Xu Jing-Dong, Dai Qi, Xia Peng-Fei. Survey on deep long-tailed learning. Acta Automatica Sinica, 2025, 51(5): 1−36 doi: 10.16383/j.aas.c240077

深度长尾学习研究综述

doi: 10.16383/j.aas.c240077 cstr: 32138.14.j.aas.c240077
详细信息
    作者简介:

    韩佳艺:中国石油大学(北京)人工智能学院自动化系博士研究生. 主要研究方向为深度长尾学习, 计算机视觉. E-mail: 2022310703@student.cup.edu.cn

    刘建伟:中国石油大学(北京)人工智能学院自动化系副教授. 2006年获得东华大学博士学位. 主要研究方向为智能系统, 机器学习, 复杂非线性系统的分析、预测与控制. E-mail: liujw@cup.edu.cn

    陈德华:东华大学计算机科学与技术学院教授. 主要研究方向为数据科学, 深度学习. 本文通信作者. E-mail: chendehua@dhu.edu.cn

    徐璟东:中国石油大学(北京)人工智能学院自动化系硕士研究生. 主要研究方向为深度长尾学习, 因果推断. E-mail: 2022211221@student.cup.edu.cn

    代琪:2024年获得中国石油大学(北京)控制理论与控制工程专业博士学位. 主要研究方向为数据挖掘, 机器学习

    夏鹏飞:东华大学计算机科学与技术学院博士研究生. 主要研究方向为深度学习, 计算机视觉.E-mail: x6635570@163.com

Survey on Deep Long-tailed Learning

More Information
    Author Bio:

    HAN Jia-Yi Ph.D. candidate in the Department of Automation, College of Artificial Intelligence, China University of Petroleum, Beijing. Her research interest covers deep long-tailed learning and computer vision

    LIU Jian-Wei Associate professor in the Department of Automation, College of Artificial Intelligence, China University of Petroleum, Beijing. He received his Ph.D. degree from Donghua University in 2006. His research interest covers intelligent system, machine learning, analysis, prediction and control of complex non-linear system

    CHEN De-Hua Professor at the College of Computer Science and Technology, Donghua University. His research interest covers data science and deep learning. Corresponding author of this paper

    XU Jing-Dong Master student in the Department of Automation, College of Artificial Intelligence, China University of Petroleum, Beijing. His research interest covers deep long-tailed learning and causal inference

    DAI Qi Received his Ph.D. degree in control theory and control engineering from China University of Petroleum, Beijing in 2024. His research interest covers data mining and machine learning

    XIA Peng-Fei Ph.D. candidate at the College of Computer Science and Technology, Donghua University. His research interest covers deep learning and computer vision

  • 摘要: 深度学习是一门依赖于数据的科学, 传统深度学习方法假定在平衡数据集上训练模型, 然而, 现实世界中大规模数据集通常表现出长尾分布现象, 样本数量众多的少量头部类主导模型训练, 而大量尾部类样本数量过少, 难以得到充分学习. 近年来, 长尾学习掀起学术界的研究热潮. 本文综合梳理和分析近年来发表在高水平会议或期刊上的文献, 对长尾学习进行全面综述. 具体而言, 根据深度学习模型设计流程, 将图像识别领域的长尾学习算法分为丰富样本数量与语义信息的优化样本空间方法, 关注特征提取器、分类器、logits和损失函数这四个基本组成部分的优化模型方法, 以及通过引入辅助任务来帮助模型训练并在多个空间共同优化长尾学习模型的辅助任务学习3大类, 根据提出的分类方法综合对比分析每类长尾学习方法的优缺点. 然后, 进一步将基于样本数量的狭义长尾学习概念推广至多尺度广义长尾学习. 此外, 对文本数据、语音数据等其他数据形式下的长尾学习算法进行简要评述. 最后, 讨论目前长尾学习面临的可解释性较差、数据质量较低等挑战, 并展望如多模态长尾学习、半监督长尾学习等未来具有潜力的发展方向.
  • 图  1  深度长尾学习研究综述组织结构图

    Fig.  1  Organizational structure diagram of a survey on deep long-tailed learning

    图  2  长尾训练集示意图

    Fig.  2  Illustration of long-tailed training set

    图  3  长尾测试集示意图

    Fig.  3  Illustration of long-tailed testing set

    图  4  常用长尾数据集分布

    Fig.  4  Distributions of common long-tailed datasets

    图  5  长尾图像识别研究现状

    Fig.  5  Current status of long-tailed image recognition research

    图  6  神经网络结构示意图

    Fig.  6  Diagram of neural network architecture

    图  7  优化样本空间各方法关系示意图

    Fig.  7  Diagram of relationships among various methods for optimizing sample space

    图  8  重采样示意图

    Fig.  8  Diagram of resampling

    图  9  单样本变换示意图

    Fig.  9  Diagram of single sample transformation

    图  10  多样本变换方法示意图

    Fig.  10  Diagram of multiple sample transformation methods

    图  11  背景增强示意图

    Fig.  11  Background enhancement diagram

    图  12  语义增强样例图

    Fig.  12  Example diagram of semantic enhancement

    图  13  优化模型空间

    Fig.  13  Optimized model space

    图  14  辅助任务学习各方法关系示意图

    Fig.  14  Diagram of the relationships among various methods in auxiliary task learning

    图  15  两阶段解耦学习模型示意图

    Fig.  15  Diagram of the two-stage decoupled learning model

    图  16  双分支网络结构示意图

    Fig.  16  Diagram of the BBN architecture

    图  17  Range loss示意图

    Fig.  17  Diagram of Range loss

    图  18  三阶段长尾知识蒸馏模型

    Fig.  18  Three-stage long-tailed knowledge distillation model

    图  19  长尾集成学习模型示意图

    Fig.  19  Diagram of long-tailed ensemble learning model

    图  20  类间样本数量长尾分布与类内属性长尾分布示例图

    Fig.  20  Example diagram of long-tailed distribution of inter-class sample counts and intra-class attributes

    表  1  常见长尾数据集基本信息

    Table  1  Basic information of common long-tailed datasets

    类型 数据集 类别数量 训练集样本数量 测试集样本数量 最大类样本数量 最小类样本数量
    图像分类 CIFAR10-LT[13] 10 50000 10000 5000 $5\;( \rho=100)$, $50\;( \rho=10)$
    图像分类 CIFAR100-LT[13] 100 50000 10000 500 $5\;( \rho=100)$, $50\;(\rho=10)$
    目标检测 ImageNet-LT[66] 1000 115846 50000 1280 5
    场景识别 Places-LT[66] 365 62500 36500 4980 5
    目标检测 iNaturalist2017[69] 5089 579184 182707 196613 381
    目标检测 iNaturalist2018[69] 8142 437513 24426 127551 19
    实例分割 LVIS v0.5[70] 1230 57000 20000 26148 1
    实例分割 LVIS v1[70] 1203 100170 19822 50552 1
    场景理解 SUN-LT[71] 397 4084 2868 12 2
    人脸识别 MS1M-LT[66] 74500 (ID) 887530 3530 598 1
    目标检测 AWA-LT[71] 50 6713 6092 720 2
    鸟类识别 CUB-LT[71] 200 2945 2348 43 2或3
    图像分类 STL10-LT[72] 10 5000 8000 500 $5\;( \rho=100)$, $50\;( \rho=10)$
    目标检测 VOC-LT[73] 20 1142 4952 775 4
    视频分类 VideoLT[74] 1004 179352 51244 1912 44
    下载: 导出CSV

    表  2  长尾图像识别方法比较

    Table  2  Comparison of long-tailed image recognition methods

    分类代表性文献优点缺点
    优化样本空间重采样[1, 2, 30, 56, 63, 82, 84, 173]简单通用, 理论直观, 易于操作1)会丢弃大量头部类有效信息
    2)重复采样尾部类不能增加有效信息, 并容易引发过拟合
    3)易引入其他噪声
    数据增强[2, 89, 15, 85, 9293, 9899]样本变换法成本较低, 易与其他方法结合, 灵活性较高. 语义增强法丰富尾部样本的语义信息, 生成具有现实意义的新样本1)样本变换法引入大量新数据, 增加模型训练成本, 且可能生成毫无意义的样本, 鲁棒性较差
    2)语义增强方法需设计专门的模型结构, 操作复杂. 并过于依赖头部类数据质量, 易给模型带来新的偏置
    优化模型空间优化特征提取器[111113, 115116, 174]有效增强样本上下文语义特征, 帮助模型学到无偏的特征表示1)引入大量参数, 占用内存, 降低训练效率
    2)可解释性较差
    优化分类器[1, 16, 26, 117, 119120, 122123]计算开销小, 训练稳定无需设计额外的损失函数或存储单元1)对超参数和优化器的选择敏感, 试错代价高
    2)灵活性较低, 在目标检测与实例分割任务上表现不佳
    logits调整[12, 28, 30, 55, 64, 124, 126]既能优化训练过程, 又能进行事后修正. 计算开销较低, 泛化性能良好, 易与其他方法结合1)依赖于数据集的先验分布
    2)修正后的边际分布可能不满足期望分布
    代价敏感加权损失函数[1112, 54, 65, 131, 133, 137]操作简单, 易于实现, 计算开销较小, 适应于实际应用场景1)优化困难, 参数敏感, 难以处理大规模真实场景
    2)头尾性能像“跷跷板”, 无法从本质上解决信息缺乏问题
    辅助任务学习解耦学习[1, 14, 138139, 142143]利用大量头部类数据生成泛化能力良好的特征表示, 能够有效提升模型性能且计算成本较低1)两阶段方法不利于端到端的模型训练与部署
    2)对数据依赖性较强
    3)与其他算法结合使用时需重新设计, 实用性不强
    度量学习[40, 5859, 131, 149, 152, 154]便于公式化与构建一个正样本接近、负样本远离的特征空间, 优化决策边界1)尾部类样本极少的情况下性能很差
    2)依赖于度量损失函数的设计
    知识蒸馏[17, 19, 36, 149, 157, 159]重用模型资源, 充分利用数据集蕴含的知识, 稳定尾部类学习过程1)计算开销大, 优化成本相对过高, 对超参数敏感
    2)易出现师生不匹配问题, 整体性能过于依赖教师模型的学习情况
    集成学习[1820, 162163, 165]在头部类和尾部类上都能保持良好性能, 泛化能力良好, 能够处理未知分布的测试集1)计算和存储负担过大, 框架部署复杂
    2)专家之间存在相互影响的情况, 难以有效整合专家
    层次学习[2325, 166]对数据间的关系进行多粒度建模, 捕捉类间隐式语义关系, 有助于头尾知识迁移1)模型设计复杂, 训练成本较高
    2)依赖于高质量数据, 有时需要数据集提供外部信息
    3)层次划分步骤对后续训练产生过大影响
    下载: 导出CSV
  • [1] Kang B Y, Xie S N, Rohrbach M, Yan Z C, Gordo A, Feng J S, et al. Decoupling representation and classifier for long-tailed recognition. In: Proceedings of the 8th International Conference on Learning Representations. Addis Ababa, Ethiopia: OpenReview.net, 2020.
    [2] Zhang Y S, Wei X S, Zhou B Y, Wu J X. Bag of tricks for long-tailed visual recognition with deep convolutional neural networks. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2021. 3447–3455
    [3] Wang J Q, Zhang W W, Zang Y H, Cao Y H, Pang J M, Gong T, et al. Seesaw loss for long-tailed instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021. 9695–9704
    [4] Fu Y, Xiang L Y, Zahid Y, Ding G G, Mei T, Shen Q, et al. Long-tailed visual recognition with deep models: A methodological survey and evaluation. Neurocomputing, 2022, 509: 290−309 doi: 10.1016/j.neucom.2022.08.031
    [5] Yang L, Jiang H, Song Q, Guo J. A survey on long-tailed visual recognition. International Journal of Computer Vision, 2022, 130(7): 1837−1872 doi: 10.1007/s11263-022-01622-8
    [6] Drummond C, Holte R C. C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. In: Proceedings of the Workshop on Learning from Imbalanced Datasets II. Washington, USA: ICML, 2003. 1–8
    [7] Shen L, Lin Z C, Huang Q M. Relay backpropagation for effective learning of deep convolutional neural networks. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. 467–482
    [8] Chou H P, Chang S C, Pan J Y, Wei W, Juan D C. Remix: Rebalanced mixup. In: Proceedings of the Computer Vision——ECCV 2020 Workshops. Glasgow, UK: Springer, 2020. 95–110
    [9] Kim J, Jeong J, Shin J. M2m: Imbalanced classification via major-to-minor translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 13896–13905
    [10] Chu P, Bian X, Liu S P, Ling H B. Feature space augmentation for long-tailed data. In: Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 694–710
    [11] Cui Y, Jia M L, Lin T Y, Song Y, Belongie S. Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 9268–9277
    [12] Tan J R, Wang C B, Li B Y, Li Q Q, Ouyang W L, Yin C Q, et al. Equalization loss for long-tailed object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 11662–11671
    [13] Cao K D, Wei C L, Gaidon A, Arechiga N, Ma T Y. Learning imbalanced datasets with label-distribution-aware margin loss. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2019. Article No. 140
    [14] Zhou B Y, Cui Q, Wei X S, Chen Z M. BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 9719–9728
    [15] Zhou A, Tajwar F, Robey A, Knowles T, Pappas G J, Hassani H, et al. Do deep networks transfer invariances across classes? arXiv preprint arXiv: 2203.09739, 2022.
    [16] Liu B, Li H X, Kang H, Hua G, Vasconcelos N. GistNet: A geometric structure transfer network for long-tailed recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 8209–8218
    [17] Zhang S Y, Chen C, Hu X Y, Peng S L. Balanced knowledge distillation for long-tailed learning. Neurocomputing, 2023, 527: 36−46 doi: 10.1016/j.neucom.2023.01.063
    [18] Sharma S, Yu N, Fritz M, Schiele B. Long-tailed recognition using class-balanced experts. In: Proceedings of the 42nd DAGM German Conference on Pattern Recognition. Tübingen, Germany: Springer, 2021. 86–100
    [19] Xiang L Y, Ding G G, Han J G. Learning from multiple experts: Self-paced knowledge distillation for long-tailed classification. In: Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 247–263
    [20] Cai J R, Wang Y Z, Hwang J N. ACE: Ally complementary experts for solving long-tailed recognition in one-shot. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 112–121
    [21] Cai J R, Wang Y Z, Hsu H M, Hwang J N, Magrane K, Rose C. LUNA: Localizing unfamiliarity near acquaintance for open-set long-tailed recognition. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2022. 131–139
    [22] Liu X T, Zhang J F, Hu T Y, Cao H, Yao Y, Pan L J. Inducing neural collapse in deep long-tailed learning. In: Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. Palau de Congressos, Spain: PMLR, 2023. 11534–11544
    [23] Wu J L, Song L C, Zhang Q, Yang M, Yuan J S. ForestDet: Large-vocabulary long-tailed object detection and instance segmentation. IEEE Transactions on Multimedia, 2022, 24: 3693−3705 doi: 10.1109/TMM.2021.3106096
    [24] Ouyang W L, Wang X G, Zhang C, Yang X K. Factors in finetuning deep model for object detection with long-tail distribution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 864–873
    [25] Li B H. Adaptive hierarchical representation learning for long-tailed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 2313–2322
    [26] Tang K H, Huang J Q, Zhang H W. Long-tailed classification by keeping the good and removing the bad momentum causal effect. arXiv preprint arXiv: 2009.12991, 2021.
    [27] Zhu B E, Niu Y L, Hua X S, Zhang H W. Cross-domain empirical risk minimization for unbiased long-tailed classification. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2022. 3589–3597
    [28] Wu T, Liu Z W, Huang Q Q, Wang Y, Lin D H. Adversarial robustness under long-tailed distribution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 8659–8668
    [29] Wang Y X, Ramanan D, Hebert M. Learning to model the tail. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 7032–7042
    [30] Ren J W, Yu C J, Sheng S N, Ma X, Zhao H Y, Yi S, et al. Balanced meta-softmax for long-tailed visual recognition. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2020. Article No. 351
    [31] Dong B W, Zhou P, Yan S C, Zuo W M. LPT: Long-tailed prompt tuning for image classification. In: Proceedings of the 11th International Conference on Learning Representations. Kigali, Rwanda: OpenReview.net, 2023.
    [32] Tang K H, Tao M Y, Qi J X, Liu Z G, Zhang H W. Invariant feature learning for generalized long-tailed classification. In: Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 709–726
    [33] Zhang R R, E H H, Yuan L F, He J W, Zhang H X, Zhang S J, et al. MBNM: Multi-branch network based on memory features for long-tailed medical image recognition. Computer Methods and Programs in Biomedicine, 2021, 212: Article No. 106448 doi: 10.1016/j.cmpb.2021.106448
    [34] Ju L, Yu Z, Wang L, Zhao X, Wang X, Bonnington P, et al. Hierarchical knowledge guided learning for real-world retinal disease recognition. IEEE Transactions on Medical Imaging, 2024, 43(1): 335−350 doi: 10.1109/TMI.2023.3302473
    [35] Yang Z X, Pan J W, Yang Y Z, Shi X Z, Zhou H Y, Zhang Z C, et al. ProCo: Prototype-aware contrastive learning for long-tailed medical image classification. In: Proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention. Singapore: Springer, 2022. 173–182
    [36] Zhao W D, Liu J N, Liu Y, Zhao F, He Y, Lu H C. Teaching teachers first and then student: Hierarchical distillation to improve long-tailed object recognition in aerial images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: Article No. 5624412
    [37] Li G Z, Pan L P, Qiu L W, Tan Z W, Xie F Y, Zhang H P. A two-stage shake-shake network for long-tailed recognition of SAR aerial view objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPRW). New Orleans, USA: IEEE, 2022. 249–256
    [38] Jiao W P, Zhang J L. Sonar images classification while facing long-tail and few-shot. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: Article No. 4210420
    [39] Guo S, Liu R J, Wang M J, Zhang M, Nie S J, Lina S, et al. Exploiting the tail data for long-tailed face recognition. IEEE Access, 2022, 10: 97945−97953 doi: 10.1109/ACCESS.2022.3206040
    [40] Zhang X, Fang Z Y, Wen Y D, Li Z F, Qiao Y. Range loss for deep face recognition with long-tailed training data. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 5419–5428
    [41] Moon W, Seong H S, Heo J P. Minority-oriented vicinity expansion with attentive aggregation for video long-tailed recognition. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Washington, USA: AAAI Press, 2023. 1931–1939
    [42] Zhang C, Ren L, Wang J G, Wu W, Song D W. Making pretrained language models good long-tailed learners. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Abu Dhabi, United Arab Emirates: ACL, 2022. 3298–3312
    [43] Li Y, Shen T, Long G D, Jiang J, Zhou T Y, Zhang C Q. Improving long-tail relation extraction with collaborating relation-augmented attention. In: Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain: ACL, 2020. 1653–1664
    [44] Huang Y, Giledereli B, Köksal A, Özgür A, Ozkirimli E. Balancing methods for multi-label text classification with long-tailed class distribution. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Punta Cana, Dominican Republic: ACL, 2021. 8153–8161
    [45] Li X Y, Sun X F, Meng Y X, Liang J J, Wu F, Li J W. Dice loss for data-imbalanced NLP tasks. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. ACL, 2020. 465–476
    [46] Conde M V, Choi U J. Few-shot long-tailed bird audio recognition. arXiv preprint arXiv: 2206.11260, 2022.
    [47] Chen Z H, Chen J L, Xie Z L, Xu E Y, Feng Y, Liu S. Multi-expert attention network with unsupervised aggregation for long-tailed fault diagnosis under speed variation. Knowledge-Based Systems, 2022, 252: Article No. 109393 doi: 10.1016/j.knosys.2022.109393
    [48] Sreepada R S, Patra B K. Mitigating long tail effect in recommendations using few shot learning technique. Expert Systems With Applications, 2020, 140: Article No. 112887 doi: 10.1016/j.eswa.2019.112887
    [49] Chaudhary A, Gupta H P, Shukla K K. Real-time activities of daily living recognition under long-tailed class distribution. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(4): 740−750 doi: 10.1109/TETCI.2022.3150757
    [50] Zhang Y F, Kang B Y, Hooi B, Yan S C, Feng J S. Deep long-tailed learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10795−10816 doi: 10.1109/TPAMI.2023.3268118
    [51] Pareto V. Cours D 'Économie Politique. Genève: Librairie Droz, 1964.
    [52] Zipf G K. The meaning-frequency relationship of words. The Journal of General Psychology, 1945, 33(2): 251−256 doi: 10.1080/00221309.1945.10544509
    [53] Hitt M A. The long tail: Why the future of business is selling less of more. Academy of Management Perspectives, 2007, 21(2): 83−85 doi: 10.5465/amp.2007.25356519
    [54] Tan J R, Lu X, Zhang G, Yin C Q, Li Q Q. Equalization loss v2: A new gradient balance approach for long-tailed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 1685–1694
    [55] Zhang S Y, Li Z M, Yan S P, He X M, Sun J. Distribution alignment: A unified framework for long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 2361–2370
    [56] Sinha S, Ohashi H, Nakamura K. Class-difficulty based methods for long-tailed visual recognition. International Journal of Computer Vision, 2022, 130(10): 2517−2531 doi: 10.1007/s11263-022-01643-3
    [57] Cui J Q, Zhong Z S, Liu S, Yu B, Jia J Y. Parametric contrastive learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 715–724
    [58] Kang B Y, Li Y, Xie S, Yuan Z H, Feng J S. Exploring balanced feature spaces for representation learning. In: Proceedings of the 9th International Conference on Learning Representations. Virtual Event: OpenReview.net, 2021.
    [59] Li T H, Cao P, Yuan Y, Fan L J, Yang Y Z, Feris R, et al. Targeted supervised contrastive learning for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEEE, 2022. 6918–6928
    [60] 叶志飞, 文益民, 吕宝粮. 不平衡分类问题研究综述. 智能系统学报, 2009, 4(2): 148−156 doi: 10.3969/j.issn.1673-4785.2009.02.010

    Ye Zhi-Fei, Wen Yi-Min, Lv Bao-Liang. A survey of imbalanced pattern classification problems. CAAI Transactions on Intelligent Systems, 2009, 4(2): 148−156 doi: 10.3969/j.issn.1673-4785.2009.02.010
    [61] 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述. 软件学报, 2021, 32(2): 349−369

    Zhao Kai-Lin, Jin Xiao-Long, Wang Yuan-Zhuo. Survey on few-shot learning. Journal of Software, 2021, 32(2): 349−369
    [62] Feng C J, Zhong Y J, Huang W L. Exploring classification equilibrium in long-tailed object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 3417–3426
    [63] Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 761–769
    [64] Zhao Y, Chen W C, Tan X, Huang K, Zhu J H. Adaptive logit adjustment loss for long-tailed visual recognition. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2022. 3472–3480
    [65] Chen Z, Casser V, Kretzschmar H, Anguelov D. GradTail: Learning long-tailed data using gradient-based sample weighting. arXiv preprint arXiv: 2201.05938, 2022.
    [66] Liu Z W, Miao Z Q, Zhan X H, Wang J Y, Gong B Q, Yu S X. Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 2537–2546
    [67] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 248–255
    [68] Zhou B L, Lapedriza A, Khosla A, Oliva A, Torralba A. Places: A 10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6): 1452−1464 doi: 10.1109/TPAMI.2017.2723009
    [69] van Horn G, mac Aodha O, Song Y, Cui Y, Sun C, Shepard A, et al. The iNaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 8769–8778
    [70] Gupta A, Dollár P, Girshick R. LVIS: A dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 5356–5364
    [71] Samuel D, Atzmon Y, Chechik G. From generalized zero-shot learning to long-tail with class descriptors. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2021. 286–295
    [72] Oh Y, Kim D J, Kweon I S. DASO: Distribution-aware semantics-oriented pseudo-label for imbalanced semi-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 9786–9796
    [73] Wu T, Huang Q Q, Liu Z W, Wang Y, Lin D H. Distribution-balanced loss for multi-label classification in long-tailed datasets. In: Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 162–178
    [74] Zhang X, Wu Z X, Weng Z J, Fu H Z, Chen J J, Jiang Y G, et al. VideoLT: Large-scale long-tailed video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 7960–7969
    [75] Lampert C H, Nickisch H, Harmeling S. Attribute-based classifcation for zero-shot visual object categorization.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (3): 453−465
    [76] Wah C, Branson S, Welinder P, Perona P, Belongie S. The caltech-UCSD birds-200-2011 dataset [Online], available: https://authors.library.caltech.edu/records/cvm3y-5hh21, March 14, 2025
    [77] Coates A, Ng A Y, Lee H. An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Lauderdale, USA: JMLR.org, 2011. 215–223
    [78] Everingham M, van Gool L, Williams C K I, Winn J, Zisserman A. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88 : 303−338
    [79] Li B L, Han Z B, Li H N, Fu H Z, Zhang C Q. Trustworthy long-tailed classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 6970–6979
    [80] Huang J, Ling C X. Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (3): 299−310
    [81] Wang T, Zhu Y S, Chen Y Y, Zhao C Y, Yu B, Wang J Q, et al. C2AM Loss: Chasing a better decision boundary for long-tail object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 6980–6989
    [82] Buda M, Maki A, Mazurowski M A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks, 2018, 106: 249−259 doi: 10.1016/j.neunet.2018.07.011
    [83] Guo H X, Li Y J, Shang J, Gu M Y, Huang Y Y, Gong B. Learning from class-imbalanced data: Review of methods and applications. Expert Systems With Applications, 2017, 73: 220−239 doi: 10.1016/j.eswa.2016.12.035
    [84] Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16: 321−357 doi: 10.1613/jair.953
    [85] Zang Y H, Huang C, Loy C C. FASA: Feature augmentation and sampling adaptation for long-tailed instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 3457–3466
    [86] Jaiswal A, Babu A R, Zadeh M Z, Banerjee D, Makedon F. A survey on contrastive self-supervised learning. Technologies, 2020, 9(1): Article No. 2 doi: 10.3390/technologies9010002
    [87] Zhang H Y, Cissé M, Dauphin Y N, Lopez-Paz D. Mixup: Beyond empirical risk minimization. arXiv preprint arXiv: 1710.09412, 2017.
    [88] Yun S, Han D, Oh S J, Yoo Y, Choe J. CutMix: Regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019. 6023–6032
    [89] Verma V, Lamb A, Beckham C, Najafi A, Mitliagkas I, Lopez-Paz D, et al. Manifold mixup: Better representations by interpolating hidden states. In: Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: PMLR, 2019. 6438–6447
    [90] Zhang S Y, Chen C, Zhang X J, Peng S L. Label-occurrence-balanced mixup for long-tailed recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022. 3224–3228
    [91] Park S, Hong Y, Heo B, Yun S, Choi J Y. The majority can help the minority: Context-rich minority oversampling for long-tailed classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 6887–6896
    [92] Zhang C, Pan T Y, Li Y D, Hu H X, Xuan D, Changpinyo S, et al. MosaicOS: A simple and effective use of object-centric images for long-tailed object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 417–427
    [93] Liu B, Li H X, Kang H, Hua G, Vasconcelos N. Breadcrumbs: Adversarial class-balanced sampling for long-tailed recognition. In: Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 637–653
    [94] Liu J L, Li W H, Sun Y F. Memory-based jitter: Improving visual recognition on long-tailed data with diversity in memory. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2022. 1720–1728
    [95] Kingma D P, Welling M. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 2019, 12(4): 307−392
    [96] Rangwani H, Jaswani N, Karmali T, Jampani V, Babu R V. Improving GANs for long-tailed data through group spectral regularization. In: Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 426–442
    [97] Gomez-Rodriguez M, Balduzzi D, Schölkopf B. Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA: Omnipress, 2011.
    [98] Liu B, Li H X, Kang H, Vasconcelos N, Hua G. Semi-supervised long-tailed recognition using alternate sampling. arXiv preprint arXiv: 2105.00133, 2021.
    [99] Wei C, Sohn K, Mellina C, Yuille A, Yang F. CReST: A class-rebalancing self-training framework for imbalanced semi-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 10857–10866
    [100] Wang W Q, Zhao Z C, Wang P Y, Su F, Meng H Y. Attentive feature augmentation for long-tailed visual recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 5803−5816 doi: 10.1109/TCSVT.2022.3161427
    [101] Wang Y L, Pan X R, Song S J, Zhang H, Wu C, Huang G. Implicit semantic data augmentation for deep networks. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2019. Article No. 1132
    [102] Li S, Gong K X, Liu C H, Wang Y L, Qiao F, Cheng X J. MetaSAug: Meta semantic augmentation for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 5212–5221
    [103] Zhao Y, Chen W C, Huang K, Zhu J H. Feature re-balancing for long-tailed visual recognition. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Padua, Italy: IEEE, 2022. 1–8
    [104] Vigneswaran R, Law M T, Balasubramanian V N, Tapaswi M. Feature generation for long-tail classification. In: Proceedings of the 12th Indian Conference on Computer Vision, Graphics and Image Processing. Jodhpur, India: ACM, 2021. Article No. 41
    [105] Liu J L, Sun Y F, Han C C, Dou Z P, Li W H. Deep representation learning on long-tailed data: A learnable embedding augmentation perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 2970–2979
    [106] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278−2324 doi: 10.1109/5.726791
    [107] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770–778
    [108] Xie S N, Girshick R, Dollár P, Tu Z W, He K M. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 1492–1500
    [109] He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2961–2969
    [110] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. In: Proceedings of the 29th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015. 91–99
    [111] Long A, Yin W, Ajanthan T, Nguyen V, Purkait P, Garg R, et al. Retrieval augmented classification for long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022. 6959–6969
    [112] Zhou J X, Li J, Yan Y B, Wu L, Xu H. Mixing global and local features for long-tailed expression recognition. Information, 2023, 14(2): Article No. 83 doi: 10.3390/info14020083
    [113] Zhao W, Su Y L, Hu M J, Zhao H. Hybrid ResNet based on joint basic and attention modules for long-tailed classification. International Journal of Approximate Reasoning, 2022, 150: 83−97 doi: 10.1016/j.ijar.2022.08.007
    [114] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 6000–6010
    [115] Chen J, Agarwal A, Abdelkarim S, Zhu D, Elhoseiny M. RelTransformer: A transformer-based long-tail visual relationship recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 19507–19517
    [116] Hou Z, Yu B S, Tao D C. BatchFormer: Learning to explore sample relationships for robust representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,USA: IEEE, 2022. 7256–7266
    [117] Ye H J, Chen H Y, Zhan D C, Chao W L. Identifying and compensating for feature deviation in imbalanced deep learning. arXiv preprint arXiv: 2001.01385, 2020.
    [118] Djouadi A, Bouktache E. A fast algorithm for the nearest-neighbor classifier. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(3): 277−282 doi: 10.1109/34.584107
    [119] Wei X S, Xu S L, Chen H, Xiao L, Peng Y X. Prototype-based classifier learning for long-tailed visual recognition. Science China Information Sciences, 2022, 65(6): Article No. 160105 doi: 10.1007/s11432-021-3489-1
    [120] Parisot S, Esperança P M, McDonagh S, Madarasz T J, Yang Y X, Li Z G. Long-tail recognition via compositional knowledge transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022. 6939–6948
    [121] Wu T Y, Morgado P, Wang P, Ho C H, Vasconcelos N. Solving long-tailed recognition with deep realistic taxonomic classifier. In: Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 171–189
    [122] Jia Y H, Peng X R, Wang R, Zhang M L. Long-tailed partial label learning by head classifier and tail classifier cooperation. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2024.
    [123] Duggal R, Freitas S, Dhamnani S, Chau D H, Sun J M. ELF: An early-exiting framework for long-tailed classification. arXiv preprint arXiv: 2006.11979, 2020.
    [124] Menon A K, Jayasumana S, Rawat A S, Jain H, Veit A, Kumar S. Long-tail learning via logit adjustment. arXiv preprint arXiv: 2007.07314, 2020.
    [125] Wang Y D, Zhang B W, Hou W X, Wu Z, Wang J D, Shinozaki T. Margin calibration for long-tailed visual recognition. In: Proceedings of the 14th Asian Conference on Machine Learning. Hyderabad, India: PMLR, 2023. 1101–1116
    [126] Li M K, Cheung Y M, Lu Y. Long-tailed visual recognition via Gaussian clouded logit adjustment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 6929–6938
    [127] Hong Y, Han S, Choi K, Seo S, Kim B, Chang B. Disentangling label distribution for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 6626–6636
    [128] Xu Z Z, Yang S, Wang X J, Yuan C. Rethink long-tailed recognition with vision transforms. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island, Greece: IEEE, 2023. 1–5
    [129] He Y Y, Zhang P Z, Wei X S, Zhang X Y, Sun J. Relieving long-tailed instance segmentation via pairwise class balance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 7000–7009
    [130] Long H X, Zhang X L, Liu Y B, Luo Z T, Liu J B. Mutual exclusive modulator for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPRW). Vancouver, Canada: IEEE, 2023. 4890–4899
    [131] Huang C, Li Y N, Loy C C, Tang X O. Learning deep representation for imbalanced classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 5375–5384
    [132] Jamal M A, Brown M, Yang M H, Wang L Q, Gong B Q. Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 7610–7619
    [133] Hsieh T I, Robb E, Chen H T, Huang J B. DropLoss for long-tail instance segmentation. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2021. 1549–1557
    [134] Park S, Lim J, Jeon Y, Choi J Y. Influence-balanced loss for imbalanced visual classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 735–744
    [135] Lin T Y, Goyal P, Girshick R, He K M, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2980–2988
    [136] Smith L N. Cyclical focal loss. arXiv preprint arXiv: 2202.08978, 2022.
    [137] Li B, Yao Y Q, Tan J R, Zhang G, Yu F W, Lu J W, et al. Equalized focal loss for dense long-tailed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 6990–6999
    [138] Wang T, Li Y, Kang B Y, Li J N, Liew J, Tang S, et al. The devil is in classification: A simple framework for long-tail instance segmentation. In: Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 728–744
    [139] Li Y, Wang T, Kang B Y, Tang S, Wang C F, Li J T, et al. Overcoming classifier imbalance for long-tail object detection with balanced group softmax. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 10991–11000
    [140] Zhong Z S, Cui J Q, Liu S, Jia J Y. Improving calibration for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 16489–16498
    [141] Fan S, Zhang X M, Song Z H, Shao W M. Cumulative dual-branch network framework for long-tailed multi-class classification. Engineering Applications of Artificial Intelligence, 2022, 114: Article No. 105080 doi: 10.1016/j.engappai.2022.105080
    [142] Guo H, Wang S. Long-tailed multi-label visual recognition by collaborative training on uniform and re-balanced samplings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 15089–15098
    [143] Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In: Proceedings of the 20th International Conference on Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2006. 153–160
    [144] Alshammari S, Wang Y X, Ramanan D, Kong S. Long-tailed recognition via weight balancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 6897–6907
    [145] Zhu Z H, Xing H L, Xu Y G. Easy balanced mixing for long-tailed data. Knowledge-Based Systems, 2022, 248: Article No. 108816 doi: 10.1016/j.knosys.2022.108816
    [146] Yang Y Z, Xu Z. Rethinking the value of labels for improving class-imbalanced learning. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2020. Article No. 1618
    [147] Liu X L, Hu Y S, Cao X S, Bagdanov A D, Li K, Cheng M M. Long-tailed class incremental learning. In: Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 495–512
    [148] Dong Q, Gong S G, Zhu X T. Imbalanced deep learning by minority class incremental rectifcation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (6): 1367−1381
    [149] Wang Y R, Gan W H, Yang J, Wu W, Yan J J. Dynamic curriculum learning for imbalanced data classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019. 5017–5026
    [150] Wei T, Shi J X, Tu W W, Li Y F. Robust long-tailed learning under label noise. arXiv preprint arXiv: 2108.11569, 2021.
    [151] Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning. Virtual Event: PMLR, 2020. Article No. 149
    [152] Wang P, Han K, Wei X S, Zhang L, Wang L. Contrastive learning based hybrid networks for long-tailed image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 943–952
    [153] Fu S M, Chu H P, He X X, Wang H L, Yang Z Y, Hu H J. Meta-prototype decoupled training for long-tailed learning. In: Proceedings of the 16th Asian Conference on Computer Vision. Macao, China: Springer, 2023. 569–585
    [154] Zhong Z S, Cui J Q, Li Z M, Lo E, Sun J, Jia J Y. Rebalanced Siamese contrastive mining for long-tailed recognition. arXiv preprint arXiv: 2203.11506, 2022.
    [155] Zhu J G, Wang Z, Chen J J, Chen Y P P, Jiang Y G. Balanced contrastive learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 6908–6917
    [156] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv preprint arXiv: 1503.02531, 2015.
    [157] Iscen A, Araújo A, Gong B Q, Schmid C. Class-balanced distillation for long-tailed visual recognition. arXiv preprint arXiv: 2104.05279, 2021.
    [158] He Y Y, Wu J X, Wei X S. Distilling virtual examples for long-tailed recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 235–244
    [159] Li T H, Wang L M, Wu G S. Self supervision to distillation for long-tailed visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 630–639
    [160] Xia Y L, Zhang S, Wang J, Zou W, Zhou J X, Wen B. One-stage self-distillation guided knowledge transfer for long-tailed visual recognition. International Journal of Intelligent Systems, 2022, 37(12): 11893−11908 doi: 10.1002/int.23068
    [161] Yang C Y, Hsu H M, Cai J R, Hwang J N. Long-tailed recognition of SAR aerial view objects by cascading and paralleling experts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, USA: IEEE, 2021. 142–148
    [162] Cui J Q, Liu S, Tian Z T, Zhong Z S, Jia J Y. ResLT: Residual learning for long-tailed recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3695−3706
    [163] Wang X D, Lian L, Miao Z Q, Liu Z W, Yu S X. Long-tailed recognition by routing diverse distribution-aware experts. arXiv preprint arXiv: 2010.01809, 2020.
    [164] Li J, Tan Z C, Wan J, Lei Z, Guo G D. Nested collaborative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 6949–6958
    [165] Zhang Y F, Hooi B, Hong L Q, Feng J S. Self-supervised aggregation of diverse experts for test-agnostic long-tailed recognition. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans, USA: Curran Associates Inc., 2022. Article No. 2470
    [166] Chen Q, Liu Q F, Lin E L. A knowledge-guide hierarchical learning method for long-tailed image classification. Neurocomputing, 2021, 459: 408−418 doi: 10.1016/j.neucom.2021.07.008
    [167] Li Z Y, Zhao H, Lin Y J. Multi-task convolutional neural network with coarse-to-fine knowledge transfer for long-tailed classification. Information Sciences, 2022, 608: 900−916 doi: 10.1016/j.ins.2022.07.015
    [168] Wen Y D, Zhang K P, Li Z, Qiao Y. A discriminative feature learning approach for deep face recognition. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. 499–515
    [169] Cao D, Zhu X Y, Huang X Y, Guo J Z, Lei Z. Domain balancing: Face recognition on long-tailed domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 5671–5679
    [170] Ma Y B, Jiao L C, Liu F, Li Y X, Yang S Y, Liu X. Delving into semantic scale imbalance. arXiv preprint arXiv: 2212.14613, 2022.
    [171] Park B, Kim J, Cho S, Kim H, Kim C. Balancing domain experts for long-tailed camera-trap recognition. arXiv preprint arXiv: 2202.07215, 2022.
    [172] Wang W T, Wang M, Wang S, Long G D, Yao L N, Qi G L, et al. One-shot learning for long-tail visual relation detection. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2020. 12225–12232
    [173] Chang N, Yu Z D, Wang Y X, Anandkumar A, Fidler S, Álvarez J M. Image-level or object-level? A tale of two resampling strategies for long-tailed detection. In: Proceedings of the 38th International Conference on Machine Learning. Virtual Event: PMLR, 2021. 1463–1472
    [174] Zhang C, Lin G S, Lai L L, Ding H H, Wu Q Y. Calibrating class activation maps for long-tailed visual recognition. arXiv preprint arXiv: 2108.12757, 2021.
    [175] Cao Y X, Kuang J, Gao M, Zhou A Y, Wen Y G, Chua T S. Learning relation prototype from unlabeled texts for long-tail relation extraction. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1761−1774
    [176] Zhang G X, Liang R J, Yu Z Y, Zhang S C. Rumour detection on social media with long-tail strategy. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Padua, Italy: IEEE, 2022. 1–8
    [177] Mottaghi A, Sarma P K, Amatriain X, Yeung S, Kannan A. Medical symptom recognition from patient text: An active learning approach for long-tailed multilabel distributions. arXiv preprint arXiv: 2011.06874, 2020.
    [178] Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20 (1): 61−80
    [179] Shi C, Hu B B, Zhao W X, Yu P S. Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357−370 doi: 10.1109/TKDE.2018.2833443
    [180] Zhao T X, Zhang X, Wang S H. GraphSMOTE: Imbalanced node classification on graphs with graph neural networks. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining. Israel: ACM, 2021. 833–841
    [181] Park J, Song J, Yang E. GraphENS: Neighbor-aware ego network synthesis for class-imbalanced node classification. In: Proceedings of the 10th International Conference on Learning Representations. Virtual Event: OpenReview.net, 2022.
    [182] Yun S, Kim K, Yoon K, Park C. LTE4G: Long-tail experts for graph neural networks. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta, USA: ACM, 2022. 2434–2443
    [183] Hu Z N, Dong Y X, Wang K S, Chang K W, Sun Y Z. GPT-GNN: Generative pre-training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event: ACM, 2020. 1857–1867
    [184] Liu Z M, Nguyen T K, Fang Y. Tail-GNN: Tail-node graph neural networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Singapore: ACM, 2021. 1109–1119
    [185] Perrett T, Sinha S, Burghardt T, Mirmehdi M, Damen D. Use your head: Improving long-tail video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023. 2415–2425
    [186] Tian C Y, Wang W H, Zhu X Z, Dai J F, Qiao Y. VL-LTR: Learning class-wise visual-linguistic representation for long-tailed visual recognition. In: Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 73–91
    [187] Ma T L, Geng S J, Wang M M, Shao J, Lu J S, Li H S, et al. A simple long-tailed recognition baseline via vision-language model. arXiv preprint arXiv: 2111.14745, 2021.
    [188] Wang R M, Yu G X, Domeniconi C, Zhang X L. Meta cross-modal hashing on long-tailed data. arXiv preprint arXiv: 2111.04086, 2021.
    [189] Wang P K, Wang X, Wang B W, Zhang Y D, Bai L, Wang Y. Long-tailed time series classification via feature space rebalancing. In: Proceedings of the 28th International Conference on Database Systems for Advanced Applications. Tianjin, China: Springer, 2023. 151–166
    [190] Deng J L, Chen X S, Jiang R H, Song X, Tsang I W. ST-norm: Spatial and temporal normalization for multi-variate time series forecasting. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Singapore: ACM, 2021. 269–278
    [191] Craw S, Horsburgh B, Massie S. Music recommendation: Audio neighbourhoods to discover music in the long tail. In: Proceedings of the 23rd International Conference on Case-Based Reasoning Research and Development. Frankfurt am Main, Germany: Springer, 2015. 73–87
    [192] Deng K Q, Cheng G F, Yang R Y, Yan Y H. Alleviating ASR long-tailed problem by decoupling the learning of representation and classification. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 340−354 doi: 10.1109/TASLP.2021.3138707
    [193] Winata G I, Wang G S, Xiong C M, Hoi S C H. Adapt-and-adjust: Overcoming the long-tail problem of multilingual speech recognition. In: Proceedings of the 22nd Annual Conference of the International Speech Communication Association. Brno, Czechia: ISCA, 2021. 2451–2455
    [194] Peng P, Lu J X, Tao S T, Ma K, Zhang Y, Wang H W, et al. Progressively balanced supervised contrastive representation learning for long-tailed fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 2022, 71: Article No. 3506112
    [195] Deng S Q, Lei Z J, Liu J X, Liu Z M, Su Y, Feng K, et al. A cost-sensitive dense network for fault diagnosis under data imbalance. In: Proceedings of the International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD). Harbin, China: IEEE, 2022. 1–6
    [196] Shao J, Zhu K, Zhang H X, Wu J X. DiffuLT: How to make diffusion model useful for long-tail recognition. arXiv preprint arXiv: 2403.05170, 2024.
    [197] Xian Y, Zhuang J X, Yu F. Solution for large-scale long-tailed recognition with noisy labels. arXiv preprint arXiv: 2106.10683, 2021.
    [198] Kabir H M D. Reduction of class activation uncertainty with background information. arXiv preprint arXiv: 2305.03238, 2023.
    [199] Du F, Yang P, Jia Q, Nan F T, Chen X T, Yang Y. Global and local mixture consistency cumulative learning for long-tailed visual recognitions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023. 15814–15823
    [200] Chen X N, Liang C, Huang D, Real E, Wang K Y, Pham H, et al. Symbolic discovery of optimization algorithms. In: Proceedings of the 37th International Conference on Neural Information Processing Systems. New Orleans, USA: Curran Associates Inc., 2023. Article No. 2140
    [201] Cui J Q, Zhong Z S, Tian Z T, Liu S, Yu B, Jia J Y. Generalized parametric contrastive learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 7463−7474 doi: 10.1109/TPAMI.2023.3278694
    [202] Shi J X, Wei T, Zhou Z, Han X Y, Shao J J, Li Y F. Parameter-efficient long-tailed recognition. arXiv preprint arXiv: 2309.10019, 2023.
    [203] Hendrycks D, Gimpel K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv: 1610.02136, 2016.
    [204] Liu W T, Wang X Y, Owens J D, Li Y X. Energy-based out-of-distribution detection. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2020. Article No. 1802
    [205] Yang Y Z, Wang H, Katabi D. On multi-domain long-tailed recognition, imbalanced domain generalization and beyond. In: Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 57–75
    [206] Kim C D, Jeong J, Kim G. Imbalanced continual learning with partitioning reservoir sampling. In: Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 411–428
    [207] Ditzler G, Polikar R, Chawla N. An incremental learning algorithm for non-stationary environments and class imbalance. In: Proceedings of the 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010. 2997–3000
    [208] Kharbanda S, Gupta D, Schultheis E, Banerjee A, Hsieh C J, Babbar R. Gandalf: Learning label-label correlations in extreme multi-label classification via label features. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Barcelona, Spain: ACM, 2024. 1360–1371
    [209] Zhang Y, Cao S C, Mi S Y, Bian Y L. Learning sample representativeness for class-imbalanced multi-label classification. Pattern Analysis and Applications, 2024, 27(2): Article No. 62 doi: 10.1007/s10044-024-01209-8
    [210] Shi J X, Wei T, Li Y F. Residual diverse ensemble for long-tailed multi-label text classification. Science China Information Sciences, 2024, 67(11): Article No. 212102 doi: 10.1007/s11432-022-3915-6
    [211] Du C Q, Han Y Z, Huang G. SimPro: A simple probabilistic framework towards realistic long-tailed semi-supervised learning. arXiv preprint arXiv: 2402.13505, 2024.
    [212] Ma C C, Elezi I, Deng J K, Dong W M, Xu C S. Three heads are better than one: Complementary experts for long-tailed semi-supervised learning. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2024. 14229–14237
    [213] Shang X Y, Lu Y, Huang G, Wang H Z. Federated learning on heterogeneous and long-tailed data via classifier re-training with federated features. arXiv preprint arXiv: 2204.13399, 2022.
    [214] Kou X, Xu C H, Yang X, Deng C. Attention-guided contrastive hashing for long-tailed image retrieval. In: Proceedings of the 31st International Joint Conference on Artificial Intelligence. Vienna, Austria: IJCAI, 2022. 1017–1023
    [215] Geifman Y, El-Yaniv R. Deep active learning over the long tail. arXiv preprint arXiv: 1711.00941, 2017.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  763
  • HTML全文浏览量:  687
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-04
  • 录用日期:  2024-07-23
  • 网络出版日期:  2024-10-24

目录

    /

    返回文章
    返回