2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

永磁同步电动机速度伺服系统最优输出反馈控制器设计

王忠阳 梁丽 王友清

王忠阳, 梁丽, 王友清. 永磁同步电动机速度伺服系统最优输出反馈控制器设计. 自动化学报, 2024, 50(9): 1794−1803 doi: 10.16383/j.aas.c240018
引用本文: 王忠阳, 梁丽, 王友清. 永磁同步电动机速度伺服系统最优输出反馈控制器设计. 自动化学报, 2024, 50(9): 1794−1803 doi: 10.16383/j.aas.c240018
Wang Zhong-Yang, Liang Li, Wang You-Qing. Optimal output feedback controller design of permanent magnet synchronous motor speed servo system. Acta Automatica Sinica, 2024, 50(9): 1794−1803 doi: 10.16383/j.aas.c240018
Citation: Wang Zhong-Yang, Liang Li, Wang You-Qing. Optimal output feedback controller design of permanent magnet synchronous motor speed servo system. Acta Automatica Sinica, 2024, 50(9): 1794−1803 doi: 10.16383/j.aas.c240018

永磁同步电动机速度伺服系统最优输出反馈控制器设计

doi: 10.16383/j.aas.c240018 cstr: 32138.14.j.aas.c240018
基金项目: 国家杰出青年科学基金(62225303), 中央高校基本科研业务费(buctrc202201, buctrc202228)资助
详细信息
    作者简介:

    王忠阳:北京化工大学信息科学与技术学院博士研究生. 2017年和2020年分别获得东华理工大学学士学位和南昌大学硕士学位. 主要研究方向为自适应动态规划, 强化学习和电力电子控制. E-mail: wangzhongyang@buct.edu.cn

    梁丽:北京化工大学信息科学与技术学院副教授. 2020年获得北京理工大学博士学位. 主要研究方向为微分对策, 多智能体系统和多目标优化与决策. E-mail: 2022500051@buct.edu.cn

    王友清:北京化工大学信息科学与技术学院教授. 2003年和2008年分别获得山东大学学士学位和清华大学博士学位. 主要研究方向为故障诊断, 容错控制, 状态监测及其在化工系统的应用. 本文通信作者. E-mail:wang.youqing@ieee.org

Optimal Output Feedback Controller Design of Permanent Magnet Synchronous Motor Speed Servo System

Funds: Supported by National Science Fund for Distinguished Young Scholars (62225303) and Fundamental Research Funds for the Central Universities (buctrc202201, buctrc202228)
More Information
    Author Bio:

    WANG Zhong-Yang Ph.D. candidate at the College of Information Science and Technology, Beijing University of Chemical Technology. He received his bachelor degree from East China University of Technology and master degree from Nanchang University in 2017 and 2020, respectively. His research interest covers adaptive dynamic programming, reinforcement learning, and power electronic control

    LIANG Li Associate professor at the College of Information Science and Technology, Beijing University of Chemical Technology. She received her Ph.D. degree from Beijing Institute of Technology in 2020. Her research interest covers differential games, multi-agent system, and multi-objective optimization and decision

    WANG You-Qing Professor at the College of Information Science and Technology, Beijing University of Chemical Technology. He received his bachelor degree from Shandong University and Ph.D. degree from Tsinghua University in 2003 and 2008, respectively. His research interest covers fault diagnosis, fault-tolerant control, state monitoring, and their applications in chemical systems. Corresponding author of this paper

  • 摘要: 针对永磁同步电动机(Permanent magnet synchronous motor, PMSM)模型参数未知以及电枢电流和负载转矩无法直接测量的问题, 设计一种基于自适应动态规划(Adaptive dynamic programming, ADP)的输出反馈控制方案, 实现PMSM最优速度跟踪控制. 首先, 根据PMSM内部特性确定其数学模型的结构, 构建与原始系统相对应的辅助系统, 引入新的线性二次指标来实现速度最优跟踪调节. 其次, 设计一种嵌入式观测器, 该观测器能够在系统模型未知情况下用可测量数据重构系统全部状态. 此外, 提出一种离线策略的ADP方法逼近最优控制增益的解. 最后, 仿真结果验证所提控制方案在模型参数未知以及电枢电流和负载转矩不可测量的情况下, 实现了精确的速度跟踪性能和良好的瞬态响应, 同时降低了电压的冲击.
  • 图  1  所提出的控制方案框图

    Fig.  1  Block diagram of the proposed control scheme

    图  2  所提控制方案算法流程图

    Fig.  2  The algorithm flowchart of the proposed control scheme

    图  3  学习过程中反馈增益的迭代误差

    Fig.  3  Iterative error of feedback gain during learning process

    图  4  不同控制方法下转子速度的跟踪效果

    Fig.  4  Tracking effect of rotor speed under different control methods

    图  5  方法1下的$ q $轴电压响应

    Fig.  5  q-axis voltage response under method 1

    图  6  方法3下的$ q $轴电压响应

    Fig.  6  q-axis voltage response under method 3

    图  7  方法2和方法4下的$ q $轴电压响应

    Fig.  7  q-axis voltage response under method 2 and method 4

    图  8  方法2和方法4下的$ q $轴电压响应局部放大

    Fig.  8  Partial amplification of q-axis voltage response under method 2 and method 4

    图  9  不同权重$ Q $下的转子速度跟踪效果

    Fig.  9  Tracking effect of rotor speed under different weights $ Q $

    图  10  不同权重$ Q $下的$ q $轴电压响应

    Fig.  10  q-axis voltage response under different weights $ Q $

    图  11  不同权重$ R $下的转子速度跟踪效果

    Fig.  11  Tracking effect of rotor speed under different weights $ R $

    图  12  不同权重$ R $下的$ q $轴电压响应

    Fig.  12  q-axis voltage response under different weights $ R $

    表  1  PMSM系统参数设置

    Table  1  PMSM system parameters setting

    参数 大小 单位
    转动惯量$J$ $2.10\times 10^{-3}$ ${{\rm{kg}}{\cdot}{\rm{m}}}^2$
    粘性摩擦系数$B_s$ $5.71\times 10^{-3}$ ${{\rm{N}}{\cdot}{\rm{s/rad}}}$
    极对数$n_p$ $4$
    永磁通链$\varphi$ $8.10\times 10^{-2}$ Wb
    定子电感$L_s$ $9.80\times 10^{-3}$ H
    定子电阻$R_s$ $1.06$ $\Omega$
    下载: 导出CSV
  • [1] Yang J, Chen W H, Li S H, Guo L, Yan Y D. Disturbance/uncertainty estimation and attenuation techniques in PMSM drives——A survey. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3273−3285 doi: 10.1109/TIE.2016.2583412
    [2] Deniz E. ANN-based MPPT algorithm for solar PMSM drive system fed by direct-connected PV array. Neural Computing and Applications, 2017, 28(10): 3061−3072 doi: 10.1007/s00521-016-2326-4
    [3] Li P, Xu X S, Yang S R, Jiang X F. Open circuit fault diagnosis strategy of PMSM drive system based on grey prediction theory for industrial robot. Energy Reports, 2023, 9: 313−320 doi: 10.1016/j.egyr.2022.10.433
    [4] Wang M L, Ren X M, Chen Q. Cascade optimal control for tracking and synchronization of a multimotor driving system. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1376−1384 doi: 10.1109/TCST.2018.2810273
    [5] Errouissi R, AL-Durra A, Muyeen S M. Experimental validation of a novel PI speed controller for AC motor drives with improved transient performances. IEEE Transactions on Control Systems Technology, 2018, 26(4): 1414−1421 doi: 10.1109/TCST.2017.2707404
    [6] Ruderman M, Iwasaki M, Chen W H. Motion-control techniques of today and tomorrow: A review and discussion of the challenges of controlled motion. IEEE Industrial Electronics Magazine, 2020, 14(1): 41−55 doi: 10.1109/MIE.2019.2956683
    [7] Kim S K. Robust adaptive speed regulator with self-tuning law for surfaced-mounted permanent magnet synchronous motor. Control Engineering Practice, 2017, 61: 55−71 doi: 10.1016/j.conengprac.2017.01.014
    [8] Wu J, Zhang J D, Nie B C, Liu Y H, He X K. Adaptive control of PMSM servo system for steering-by-wire system with disturbances observation. IEEE Transactions on Transportation Electrification, 2022, 8(2): 2015−2028 doi: 10.1109/TTE.2021.3128429
    [9] 谢浩然, 胡纯福, 卢萌, 刘晓, 黄守道. 基于级联线性−非线性自抗扰控制器的永磁直线同步电机速度控制策略研究. 中国电机工程学报, 2024, 44(15): 6158−6168

    Xie Hao-Ran, Hu Chun-Fu, Lu Meng, Liu Xiao, Huang Shou-Dao. Research on speed control strategy for permanent magnet linear synchronous motor based on cascaded linear-nonlinear active disturbance rejection controller. Proceedings of the CSEE, 2024, 44(15): 6158−6168
    [10] 徐睿琦, 张昆鹏, 林欣魄, 孔德山, 刘壮, 刘健行. 基于高阶滑模观测器的永磁同步电机无差拍预测电流控制. 控制理论与应用, 2023, 40(11): 1990−1998 doi: 10.7641/CTA.2023.20476

    Xu Rui-Qi, Zhang Kun-Peng, Lin Xin-Po, Kong De-Shan, Liu Zhuang, Liu Jian-Xing. Deadbeat predictive current control of permanent magnet synchronous motor based on higher order sliding mode observer. Control Theory & Applications, 2023, 40(11): 1990−1998 doi: 10.7641/CTA.2023.20476
    [11] 卢宏平, 赵文祥, 陶涛, 王化南, 钱渊方, 王政. 永磁同步电机低载波比精确无差拍预测电流控制. 中国电机工程学报, DOI: 10.13334/j.0258-8013.pcsee.231871

    Lu Hong-Ping, Zhao Wen-Xiang, Tao Tao, Wang Hua-Nan, Qian Yuan-Fang, Wang Zheng. Precise deadbeat predictive current control of PMSM with low carrier ratio. Proceedings of the CSEE, DOI: 10.13334/j.0258-8013.pcsee.231871
    [12] 张化光, 张欣, 罗艳红, 杨珺. 自适应动态规划综述. 自动化学报, 2013, 39(4): 303−311 doi: 10.1016/S1874-1029(13)60031-2

    Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4): 303−311 doi: 10.1016/S1874-1029(13)60031-2
    [13] Gao W N, Jiang Z P. Adaptive dynamic programming and adaptive optimal output regulation of linear systems. IEEE Transactions on Automatic Control, 2016, 61(12): 4164−4169 doi: 10.1109/TAC.2016.2548662
    [14] Wei Q L, Liu D R, Lin H Q. Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems. IEEE Transactions on Cybernetics, 2016, 46(3): 840−853 doi: 10.1109/TCYB.2015.2492242
    [15] Lu J W, Wei Q L, Wang F Y. Parallel control for optimal tracking via adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2020, 7(6): 1662−1674 doi: 10.1109/JAS.2020.1003426
    [16] 王睿, 孙秋野, 张化光. 微电网的电流均衡/电压恢复自适应动态规划策略研究. 自动化学报, 2022, 48(2): 479−491

    Wang Rui, Sun Qiu-Ye, Zhang Hua-Guang. Research on current sharing/voltage recovery based adaptive dynamic programming control strategy of microgrids. Acta Automatica Sinica, 2022, 48(2): 479−491
    [17] 罗彪, 欧阳志华, 易昕宁, 刘德荣. 基于自适应动态规划的移动机器人视觉伺服跟踪控制. 自动化学报, 2023, 49(11): 2286−2296

    Luo Biao, Ouyang Zhi-Hua, Yi Xin-Ning, Liu De-Rong. Adaptive dynamic programming based visual servoing tracking control for mobile robots. Acta Automatica Sinica, 2023, 49(11): 2286−2296
    [18] Wang Z Y, Wang Y Q, Davari M, Blaabjerg F. An effective PQ-decoupling control scheme using adaptive dynamic programming approach to reducing oscillations of virtual synchronous generators for grid connection with different impedance types. IEEE Transactions on Industrial Electronics, 2024, 71(4): 3763−3775 doi: 10.1109/TIE.2023.3279564
    [19] Wang Z Y, Yu Y J, Gao W N, Davari M, Deng C. Adaptive, optimal, virtual synchronous generator control of three-phase grid-connected inverters under different grid conditions——An adaptive dynamic programming approach. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7388−7399 doi: 10.1109/TII.2021.3138893
    [20] Qasem O, Davari M, Gao W N, Kirk D R, Chai T Y. Hybrid iteration ADP algorithm to solve cooperative, optimal output regulation problem for continuous-time, linear, multiagent systems: Theory and application in islanded modern microgrids with IBRs. IEEE Transactions on Industrial Electronics, 2024, 71(1): 834−845 doi: 10.1109/TIE.2023.3247734
    [21] Ping Z W, Jia Y J, Xiong B G, Zhang H W, Lu J G. Optimal output regulation for PMSM speed servo system using approximate dynamic programming. Science China Information Sciences, 2023, 66(7): Article No. 170206
    [22] Khiabani A G, Heydari A. Optimal torque control of permanent magnet synchronous motors using adaptive dynamic programming. IET Power Electronics, 2020, 13(12): 2442−2449 doi: 10.1049/iet-pel.2019.1339
    [23] Tan L N, Pham T C. Optimal tracking control for PMSM with partially unknown dynamics, saturation voltages, torque, and voltage disturbances. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3481−3491 doi: 10.1109/TIE.2021.3075892
    [24] Zhao J G, Yang C Y, Gao W N, Zhou L N. Reinforcement learning and optimal control of PMSM speed servo system. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8305−8313 doi: 10.1109/TIE.2022.3220886
    [25] Rizvi S A A, Lin Z L. Reinforcement learning-based linear quadratn of continuous-time systems using dynamic output feedback. IEEE Transactions on Cybernetics, 2020, 50(11): 4670−4679 doi: 10.1109/TCYB.2018.2886735
    [26] 庞文砚, 范家璐, 姜艺, Lewis Frank Leroy. 基于强化学习的部分线性离散时间系统的最优输出调节. 自动化学报, 2022, 48(9): 2242−2253

    Pang Wen-Yan, Fan Jia-Lu, Jiang Yi, Lewis Frank Leroy. Optimal output regulation of partially linear discrete-time systems using reinforcement learning. Acta Automatica Sinica, 2022, 48(9): 2242−2253
    [27] Gao W N, Jiang Z P. Adaptive optimal output regulation of time-delay systems via measurement feedback. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 938−945 doi: 10.1109/TNNLS.2018.2850520
    [28] Wang Z Y, Wang Y Q, Kowalczuk Z. Adaptive optimal discrete-time output-feedback using an internal model principle and adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2024, 11(1): 131−140 doi: 10.1109/JAS.2023.123759
    [29] Gao W N, Liu Y Y, Odekunle A, Yu Y J, Lu P L. Adaptive dynamic programming and cooperative output regulation of discrete-time multi-agent systems. International Journal of Control, Automation and Systems, 2018, 16: 2273−2281 doi: 10.1007/s12555-017-0635-8
    [30] Du H B, Wen G H, Cheng Y J, Lu J H. Design and implementation of bounded finite-time control algorithm for speed regulation of permanent magnet synchronous motor. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2417−2426 doi: 10.1109/TIE.2020.2973904
    [31] Krishnan R. Electric Motor Drives: Modeling, Analysis, and Control. Upper Saddle River: Prentice Hall, 2001.
    [32] Huang J. Nonlinear Output Regulation: Theory and Applications. Philadelphia: SIAM, 2004.
    [33] Wang Z Y, Yu Y J. Adaptive optimal control of CVCF inverters with uncertain load: An adaptive dynamic programming approach. IEEE Access, 2021, 9: 89276−89286 doi: 10.1109/ACCESS.2021.3090815
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  164
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-08-18
  • 刊出日期:  2024-09-19

目录

    /

    返回文章
    返回