2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

景象匹配无人机视觉定位

袁媛 孙柏 刘赶超

袁媛, 孙柏, 刘赶超. 景象匹配无人机视觉定位. 自动化学报, 2025, 51(2): 1−25 doi: 10.16383/j.aas.c230778
引用本文: 袁媛, 孙柏, 刘赶超. 景象匹配无人机视觉定位. 自动化学报, 2025, 51(2): 1−25 doi: 10.16383/j.aas.c230778
Yuan Yuan, Sun Bo, Liu Gan-Chao. Drone-based scene matching visual geo-localization. Acta Automatica Sinica, 2025, 51(2): 1−25 doi: 10.16383/j.aas.c230778
Citation: Yuan Yuan, Sun Bo, Liu Gan-Chao. Drone-based scene matching visual geo-localization. Acta Automatica Sinica, 2025, 51(2): 1−25 doi: 10.16383/j.aas.c230778

景象匹配无人机视觉定位

doi: 10.16383/j.aas.c230778 cstr: 32138.14.j.aas.c230778
基金项目: 国家自然科学基金 (62273282, 62201471) 资助
详细信息
    作者简介:

    袁媛:西北工业大学光电与人工智能研究院教授. 主要研究方向为跨域遥感和群体智能决策. E-mail: y.yuan@nwpu.edu.cn

    孙柏:西北工业大学计算机学院博士研究生. 主要研究方向为度量学习和视觉定位. E-mail: sunbo_bosun@mail.nwpu.edu.cn

    刘赶超:西北工业大学光电与人工智能研究院副教授. 主要研究方向为跨域遥感和视觉定位. 本文通信作者. E-mail: liuganchao@nwpu.edu.cn

Drone-based Scene Matching Visual Geo-localization

Funds: Supported by National Natural Science Foundation of China (62273282, 62201471)
More Information
    Author Bio:

    YUAN Yuan Professor at the School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University. Her research interest covers cross-domain remote sensing and swarm intelligent decision-making

    SUN Bo Ph.D. candidate at the School of Computer Science, Northwestern Polytechnical University. His research interest covers metric learning and visual geo-localization

    LIU Gan-Chao Associate professor at the School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University. His research interest covers cross-domain remote sensing and visual geo-localization. Corresponding author of this paper

  • 摘要: 无人机因其高度的灵活性, 在临地安防、灾后救援、地质勘测、农业植保等领域发挥着重要作用, 因此受到越来越多的关注. 定位导航作为无人机中的关键技术, 对于无人机能否顺利执行任务至关重要. 当前主要的定位导航算法包括全球导航卫星系统(Global navigation satellite system, GNSS)、惯性定位以及景象匹配定位导航等. 首先, 景象匹配定位导航方法利用计算机视觉技术, 对无人机飞行时采集的航空影像进行数字化特征编码; 随后, 通过构建相似性度量与检索模型, 将航空影像特征与预先获取的遥感地图库特征进行相似性度量, 从而完成景象匹配; 最后, 根据无人机航空影像与遥感卫星地图的匹配结果, 获取相应的地理位置信息, 并将其更新为无人机的定位结果. 景象匹配定位导航方法摆脱了定位系统对定位信号的依赖, 实现了无人机飞行定位的自主化. 鉴于此, 以景象匹配算法中的特征提取方式为线索, 分别针对基于模板匹配、基于手工特征以及基于度量学习的景象匹配, 梳理其发展过程, 并总结了景象匹配定位导航方法中的关键问题. 最后, 针对景象匹配算法的发展现状, 总结了无人机景象匹配定位方法中亟待解决的问题.
  • 图  1  无人机景象匹配定位算法流程图

    Fig.  1  Flow chart of drone scene matching geo-localization algorithm

    图  2  基于模板匹配的定位算法示意图

    Fig.  2  Schematic diagram of location algorithm based on template matching

    图  3  SIFT特征点匹配算法示意图

    Fig.  3  Schematic diagram of SIFT feature point matching algorithm

    图  4  多源影像差异

    Fig.  4  Multi-source image differences

    图  5  多源多视角无人机影像差异

    Fig.  5  Multi-source multi-view drone image differences

    表  1  定位算法对比结果

    Table  1  Comparison results of localization algorithms

    分类 方法 精度 抗干扰性 实时性 发展现状
    相对定位 INS 短时精度高 较为成熟
    绝对定位 GPS 较高 成熟
    绝对定位 SMS 较低 亟待研究
    下载: 导出CSV

    表  2  代表性方法汇总

    Table  2  Summary of representative methods

    方法 算法分类 实现方式 地图数据来源 无人机数据来源 航拍影像尺寸(像素) 定位/匹配精度
    Loeckx等等[16] 模板匹配 NCC 谷歌地图 真实拍摄 12.5 m
    Yol等[18] 模板匹配 MI 谷歌地图 真实拍摄 10.36 m
    Fan等[19] 模板匹配 NCC 谷歌地图 谷歌地球
    Levin等[20] 模板匹配 CC DEM数据 DEM 数据
    Lin等[55] 模板匹配 MI 谷歌地图 谷歌地球 720$ \times $480 1.91 m
    Huang等[56] 模板匹配 MI 谷歌地图 真实拍摄 640$ \times $480
    Wan等[57] 模板匹配 PC 卫星数据 真实拍摄 3 648$ \times $2 736 3 m
    Patel[58] 模板匹配 NID 谷歌地图 真实拍摄 560$ \times $315
    Shan等[23] 特征点法 HOG 谷歌地图 真实拍摄 850$ \times $500 3 m
    Masselli等[27] 特征点法 ORB 谷歌地图 真实拍摄 640$ \times $480 9.5 m
    Chiu等[30] 特征点法 2D-3D点 DARPA 真实拍摄 13.98 m
    Mantelli等[31] 特征点法 abBREIF 谷歌地图 真实拍摄 17.78 m
    Shan等[33] 特征点法 MSD+ LSS 谷歌地图 真实拍摄
    Woo等[34] 特征点法 角点 谷歌地图 真实拍摄 96%
    Pluckter等[59] 特征点法 ORB 谷歌地图 真实拍摄
    Pan等[61] 特征点法 SIFT 谷歌地图 真实拍摄 586$ \times $452 5.2 pix
    Couturier等[81] 特征点法 ORB 真实拍摄
    Couturier等[82] 特征点法 SURF 真实拍摄 1 920$ \times $1 080 5.2 m
    Goforth等[42] 深度学习 VGG16 谷歌地图 真实拍摄 4 608$ \times $2 592 25 m
    Amer等[44] 深度学习 VGG16 谷歌地图 Bing地图 500$ \times $500 91.2%
    Nassar等[48] 深度学习 U-Net 谷歌地图+Bing地图 谷歌地球
    Marcu等[60] 深度学习 MSMT OpenStreetMap 1 500$ \times $1 500
    Schleiss[52] 深度学习 cGAN+SSD 真实拍摄
    Zheng等[64] 深度学习 ResNet 谷歌地图 谷歌地球 512$ \times $512 70.54%
    Workman等[65] 深度学习 谷歌地图 谷歌街景/Flickr
    Hays等[66] 深度学习 网络爬取 Flickr
    Weyand等[62] 深度学习 LSTM 谷歌地图 谷歌地球
    Wu等[63] 深度学习 Lucas-Kanade 真实拍摄 仿真数据 5 632$ \times $5 376 9.8 m
    Li等[96] 深度学习 channel attention 真实拍摄 真实拍摄 44.7%
    Jouko等[97] 深度学习 正交投影 谷歌地图 真实拍摄 4 800$ \times $2 987 11.2 m
    Wen等[98] 深度学习 SiamRPN 谷歌地图 真实拍摄
    Wang等[78] 深度学习 LPN 谷歌地图 谷歌地球 512$ \times $512 79.14%
    Dai等[99] 深度学习 FSRA 谷歌地图 谷歌地球 512$ \times $512 87.32%
    Tian等[100] 深度学习 PCL 谷歌地图 谷歌地球 512$ \times $512 87.53%
    Zhu等[101] 深度学习 SUES-200 谷歌地图 真实拍摄 512$ \times $512 80.67%
    下载: 导出CSV
  • [1] 李学龙. 临地安防. 中国计算机学会通讯, 2022, 18(11): 44−52

    Li Xue-Long. Vicinagearth security. Communications of the CCF, 2022, 18(11): 44−52
    [2] 陈杰, 方浩, 曾宪琳. 面向高危行业的无人平台智能化发展. 中国科学: 信息科学, 2021, 51(9): 1397−1410 doi: 10.1360/SSI-2021-0154

    Chen Jie, Fang Hao, Zeng Xian-Lin. On the intelligent development of unmanned platforms in high-risk industries. Scientia Sinica Informationis, 2021, 51(9): 1397−1410 doi: 10.1360/SSI-2021-0154
    [3] 中国民用航空局, 国家发展改革委员会, 交通运输部. “十四五”民用航空发展规划[Online], available: https://www.gov.cn/zhengce/zhengceku/2022-01/07/5667003/files/d12ea75169374a15a742116f7082df85.pdf, 2024-12-31)

    Civil Aviation Administration of China, National Development and Reform Commission, Ministry of Transport. Civil aviation development during the 14th Five Year Plan period exhibition planning [Online], available: https://www.gov.cn/zhengce/zhengceku/2022-01/07/5667003/files/d12ea75169374a15a742116f7082df85.pdf, December 31, 2024
    [4] 赵春晖, 周昳慧, 林钊, 胡劲文, 潘泉. 无人机景象匹配视觉导航技术综述. 中国科学: 信息科学, 2019, 49(5): 507−519 doi: 10.1360/N112018-00316

    Zhao Chun-Hui, Zhou Yi-Hui, Lin Zhao, Hu Jin-Wen, Pan Quan. Review of scene matching visual navigation for unmanned aerial vehicles. Scientia Sinica Informationis, 2019, 49(5): 507−519 doi: 10.1360/N112018-00316
    [5] Huang G Q. Visual-inertial navigation: A concise review. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 9572−9582
    [6] Shen L, Stopher P R. Review of GPS travel survey and GPS data-processing methods. Transport Reviews, 2014, 34(3): 316−334 doi: 10.1080/01441647.2014.903530
    [7] Couturier A, Akhloufi M A. A review on absolute visual localization for UAV. Robotics and Autonomous Systems, 2021, 135: Article No. 103666 doi: 10.1016/j.robot.2020.103666
    [8] Ma J Y, Jiang X Y, Fan A X, Jiang J J, Yan J C. Image matching from handcrafted to deep features: A survey. International Journal of Computer Vision, 2021, 129(1): 23−79 doi: 10.1007/s11263-020-01359-2
    [9] Zitová B, Flusser J. Image registration methods: A survey. Image and Vision Computing, 2003, 21(11): 977−1000 doi: 10.1016/S0262-8856(03)00137-9
    [10] Le Moigne J, Campbell W J, Cromp R F. An automated parallel image registration technique based on the correlation of wavelet features. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1849−1864 doi: 10.1109/TGRS.2002.802501
    [11] Pan W H, Wei S D, Lai S H. Efficient NCC-based image matching in Walsh-Hadamard domain. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 468−480
    [12] Liu H Z, Guo B L, Feng Z Z. Pseudo-log-polar Fourier transform for image registration. IEEE Signal Processing Letters, 2006, 13(1): 17−20 doi: 10.1109/LSP.2005.860549
    [13] Cain S C, Hayat M M, Armstrong E E. Projection-based image registration in the presence of fixed-pattern noise. IEEE Transactions on Image Processing, 2001, 10(12): 1860−1872 doi: 10.1109/83.974571
    [14] van Dalen G J, Magree D P, Johnson E N. Absolute localization using image alignment and particle filtering. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. San Diego, USA: AIAA, 2016. Article No. 647

    van Dalen G J, Magree D P, Johnson E N. Absolute localization using image alignment and particle filtering. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. San Diego, USA: AIAA, 2016. Article No. 647
    [15] Klein S, Staring M, Pluim J P W. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Transactions on Image Processing, 2007, 16(12): 2879−2890 doi: 10.1109/TIP.2007.909412
    [16] Loeckx D, Slagmolen P, Maes F, Vandermeulen D, Suetens P. Nonrigid image registration using conditional mutual information. IEEE Transactions on Medical Imaging, 2010, 29(1): 19−29 doi: 10.1109/TMI.2009.2021843
    [17] Viola P A, Wells W M. Alignment by maximization of mutual information. International Journal of Computer Vision, 1997, 24(2): 137−154 doi: 10.1023/A:1007958904918
    [18] Yol A, Delabarre B, Dame A, Dartois J E, Marchand E. Vision-based absolute localization for unmanned aerial vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: IEEE, 2014. 3429−3434
    [19] Fan B J, Du Y K, Zhu L L, Tang Y D. The registration of UAV down-looking aerial images to satellite images with image entropy and edges. In: Proceedings of the 3rd International Conference on Intelligent Robotics and Applications. Shanghai, China: Springer, 2010. 609−617
    [20] Levin E, Kupiec S A, Forrester T, DeBacker T A, Jannson T P. GIS-based UAV real-time path planning and navigation. In: Proceedings of the SPIE 4708, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement. Orlando, USA: SPIE, 2002. 296−303
    [21] Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of the 17th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 1150−1157
    [22] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91−110 doi: 10.1023/B:VISI.0000029664.99615.94
    [23] Shan M, Wang F, Lin F, Gao Z, Tang Y Z, Chen B M. Google map aided visual navigation for UAVs in GPS-denied environment. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO). Zhuhai, China: IEEE, 2015. 114−119
    [24] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego, USA: IEEE, 2005. 886−893
    [25] Sun D Q, Roth S, Black M J. Secrets of optical flow estimation and their principles. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2432−2439
    [26] Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient alternative to SIFT or SURF. In: Proceedings of the International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 2564−2571
    [27] Masselli A, Hanten R, Zell A. Localization of unmanned aerial vehicles using terrain classification from aerial images. In: Proceedings of the 13th International Conference IAS-13. Cham, Germany: Springer, 2016. 831−842
    [28] Alcantarilla P F, Nuevo J, Bartoli A. Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: Proceedings of the British Machine Vision Conference. Bristol, UK: BMVA, 2013. 1−11
    [29] Leutenegger S, Chli M, Siegwart R Y. BRISK: Binary robust invariant scalable keypoints. In: Proceedings of the International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 2548−2555
    [30] Chiu H P, Das A, Miller P, Samarasekera S, Kumar R. Precise vision-aided aerial navigation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: IEEE, 2014. 688−695
    [31] Mantelli M, Pittol D, Neuland R, Ribacki A, Maffei R, Jorge V, et al. A novel measurement model based on abBRIEF for global localization of a UAV over satellite images. Robotics and Autonomous Systems, 2019, 112: 304−319 doi: 10.1016/j.robot.2018.12.006
    [32] Wei Q L, Yang Z S, Su H Z, Wang L J. Monte Carlo-based reinforcement learning control for unmanned aerial vehicle systems. Neurocomputing, 2022, 507: 282−291

    Wei Q L, Yang Z S, Su H Z, Wang L J. Monte Carlo-based reinforcement learning control for unmanned aerial vehicle systems. Neurocomputing, 2022, 507: 282−291
    [33] Shan M, Charan A. Google map referenced UAV navigation via simultaneous feature detection and description. In: Proceedings of the IEEE International Conferenceon on Robotics and Biomimetics (ROBIO), 2015. 114−119

    Shan M, Charan A. Google map referenced UAV navigation via simultaneous feature detection and description. In: Proceedings of the IEEE International Conferenceon on Robotics and Biomimetics (ROBIO), 2015. 114−119
    [34] Woo J, Son K, Li T, Kim G, Kweon I S. Vision-based UAV navigation in mountain area. In: Proceedings of the MVA. Tokyo, Japan: MVA, 2007. 236−239
    [35] Han X F, Leung T, Jia Y Q, Sukthankar R, Berg A C. MatchNet: Unifying feature and metric learning for patch-based matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 3279−3286
    [36] Chang J, Lan Z H, Cheng C M, Wei Y C. Data uncertainty learning in face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 5709−5718
    [37] Tian Y X, Deng X Q, Zhu Y, Newsam S. Cross-time and orientation-invariant overhead image geolocalization using deep local features. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Snowmass, USA: IEEE, 2020. 2501−2509
    [38] Nassar A, Amer K, ElHakim R, ElHelw M. A deep CNN-based framework for enhanced aerial imagery registration with applications to UAV geolocalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, USA: IEEE, 2018. 1594−159410
    [39] Noh H, Araujo A, Sim J, Weyand T, Han B. Large-scale image retrieval with attentive deep local features. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 3476−3485
    [40] Teichmann M, Araujo A, Zhu M L, Sim J. Detect-to-retrieve: Efficient regional aggregation for image search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 5104−5113
    [41] Hinzmann T, Siegwart R. Deep UAV localization with reference view rendering. arXiv preprint arXiv: 2008.04619, 2020.

    Hinzmann T, Siegwart R. Deep UAV localization with reference view rendering. arXiv preprint arXiv: 2008.04619, 2020.
    [42] Goforth H, Lucey S. GPS-denied UAV localization using pre-existing satellite imagery. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 2974−2980
    [43] Kinnari J, Verdoja F, Kyrki V. Season-invariant GNSS-denied visual localization for UAVs. IEEE Robotics and Automation Letters, 2022, 7(4): 10232−10239 doi: 10.1109/LRA.2022.3191038
    [44] Amer K, Samy M, ElHakim R, Shaker M, ElHelw M. Convolutional neural network-based deep urban signatures with application to drone localization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy: IEEE, 2017. 2138−2145
    [45] Google map [Online], available: https://cloud.google.com/mapplatform/, December 31, 2020

    Google map [Online], available: https://cloud.google.com/mapplatform/, December 31, 2020
    [46] Bing map [Online], available: https://www.bing.com/map, December 31, 2020

    Bing map [Online], available: https://www.bing.com/map, December 31, 2020
    [47] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: ICLR, 2015.
    [48] Nassar A, Lefèvre S, Wegner J. Simultaneous multi-view instance detection with learned geometric soft-constraints. In: Proceedingsof the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019. 6558-6567

    Nassar A, Lefèvre S, Wegner J. Simultaneous multi-view instance detection with learned geometric soft-constraints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019. 6558-6567
    [49] Nassar A, ElHelw M. Aerial imagery registration using deep learning for UAV geolocalization. Deep Learning in Computer Vision: Principles and Applications. Boca Raton: CRC Press, 2020. 183−210
    [50] Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381−395 doi: 10.1145/358669.358692
    [51] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015. 234−241
    [52] Schleiss M. Translating aerial images into street-map-like representations for visual self-localization of UAVs. In: Proceedings of the XLII-2/W13, the international archives of the photogrammetry, Remote Sensing and Spatial Information Sciences. Austria, 2019. 575−580

    Schleiss M. Translating aerial images into street-map-like representations for visual self-localization of UAVs. In: Proceedings of the XLII-2/W13, the international archives of the photogrammetry, Remote Sensing and Spatial Information Sciences. Austria, 2019. 575−580
    [53] Isola P, Zhu J Y, Zhou T H, Efros A A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 5967−5976
    [54] OpenStreetMap [Online], available: https://www.openstreetmap.org/, December 31, 2020

    OpenStreetMap [Online], available: https://www.openstreetmap.org/, December 31, 2020
    [55] Lin Y P, Medioni G. Map-enhanced UAV image sequence registration and synchronization of multiple image sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1−7
    [56] Huang S M, Huang C C, Chou C C. Image registration among UAV image sequence and Google satellite image under quality mismatch. In: Proceedings of the 12th International Conference on ITS Telecommunications. Taipei, China: IEEE, 2012. 311−315
    [57] Wan X, Liu J G, Yan H S, Morgan G L K. Illumination-invariant image matching for autonomous UAV localisation based on optical sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 198−213 doi: 10.1016/j.isprsjprs.2016.05.016
    [58] Patel B. Visual Localization for UAVs in Outdoor GPS-denied Environments [Master thesis], University of Toronto, Canada, 2019.
    [59] Pluckter K, Scherer S. Precision UAV landing in unstructured environments. In: Proceedings of the International Symposium on Experimental Robotics. Cham, Germany: Springer, 2020. 177−187
    [60] Marcu A, Costea D, Slusanschi E, Leordeanu M. A multi-stage multi-task neural network for aerial scene interpretation and geolocalization. arXiv preprint arXiv: 1804.01322, 2018.

    Marcu A, Costea D, Slusanschi E, Leordeanu M. A multi-stage multi-task neural network for aerial scene interpretation and geolocalization. arXiv preprint arXiv: 1804.01322, 2018.
    [61] Pan A N, Yang Y. Remote sensing images registration with different viewpoints. In: Proceedings of the International Conference on Audio, Language and Image Processing (ICALIP). Shanghai, China: IEEE, 2016. 699−704
    [62] Weyand T, Kostrikov I, Philbin J. PlaNet-photo geolocation with convolutional neural networks. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. 37−55
    [63] Wu S B, Du C, Chen H, Jing N. Coarse-to-fine UAV image geo-localization using multi-stage Lucas-Kanade networks. In: Proceedings of the 2nd Information Communication Technologies Conference (ICTC). Nanjing, China: IEEE, 2021. 220−224
    [64] Zheng Z D, Wei Y C, Yang Y. University-1652: A multi-view multi-source benchmark for drone-based geo-localization. In: Proceedings of the 28th ACM International Conference on Multimedia. Seattle, USA: ACM, 2020. 1395−1403
    [65] Workman S, Souvenir R, Jacobs N. Wide-area image geolocalization with aerial reference imagery. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 3961−3969
    [66] Hays J, Efros A A. IM2GPS: Estimating geographic information from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1−8
    [67] Yang H L, Lu X F, Zhu Y Y. Cross-view geo-localization with evolving transformer. arXiv preprint arXiv: 2107.00842, 2021.

    Yang H L, Lu X F, Zhu Y Y. Cross-view geo-localization with evolving transformer. arXiv preprint arXiv: 2107.00842, 2021.
    [68] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, et al. An image is worth 16×16 words: Transformers for image recognition at scale. In: Proceedings of the 9th International Conference on Learning Representations. Virtual Event: ICLR, 2021.

    Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, et al. An image is worth 16×16 words: Transformers for image recognition at scale. In: Proceedings of the 9th International Conference on Learning Representations. Virtual Event: ICLR, 2021.
    [69] Shi Y J, Liu L, Yu X, Li H D. Spatial-aware feature aggregation for cross-view image based geo-localization. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver, Canada: ACM, 2019. Article No. 905
    [70] Liu L, Li H D. Lending orientation to neural networks for cross-view geo-localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 5617−5626
    [71] Hu S Y, Chang, X J. Multi-view drone-based geo-localization via style and spatial alignment. arXiv preprint arXiv: 2006.13681, 2020.

    Hu S Y, Chang, X J. Multi-view drone-based geo-localization via style and spatial alignment. arXiv preprint arXiv: 2006.13681, 2020.
    [72] Jin Y, Li C N, Li Y D, Peng P X, Giannopoulos G A. Model latent views with multi-center metric learning for vehicle re-identification. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1919−1931 doi: 10.1109/TITS.2020.3042558
    [73] Sun B, Liu G C, Yuan Y. F3-Net: Multiview scene matching for drone-based geo-localization. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: Article No. 5610611
    [74] Ding L R, Zhou J, Meng L X, Long Z Y. A practical cross-view image matching method between UAV and satellite for UAV-based geo-localization. Remote Sensing, 2021, 13(1): Article No. 47
    [75] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: ACM, 2017. 214−223
    [76] Chan E R, Monteiro M, Kellnhofer P, Wu J J, Wetzstein G. pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 5795−5805
    [77] Shi Y J, Yu X, Liu L, Zhang T, Li H D. Optimal feature transport for cross-view image geo-localization. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020. 11990−11997
    [78] Wang T Y, Zheng Z D, Yan C G, Zhang J Y, Sun Y Q, Zheng B L, et al. Each part matters: Local patterns facilitate cross-view geo-localization. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(2): 867−879 doi: 10.1109/TCSVT.2021.3061265
    [79] 司书斌, 赵大伟, 徐婉莹, 张勇刚, 戴斌. 视觉−惯性导航定位技术研究进展. 中国图象图形学报, 2021, 26(6): 1470−1482 doi: 10.11834/jig.200863

    Si Shu-Bin, Zhao Da-Wei, Xu Wan-Ying, Zhang Yong-Gang, Dai Bin. Review on visual-inertial navigation and positioning technology. Journal of Image and Graphics, 2021, 26(6): 1470−1482 doi: 10.11834/jig.200863
    [80] Castañeda N, Lamy-Perbal S. An improved shoe-mounted inertial navigation system. In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. Zurich, Switzerland: IEEE, 2010. 1−6
    [81] Couturier A, Akhloufi M A. Relative visual localization (RVL) for UAV navigation. In: Proceedings of the SPIE 10642, Degraded Environments: Sensing, Processing, and Display. Orlando, USA: SPIE, 2018. Article No. 106420O
    [82] Couturier A, Akhloufi M. Conditional probabilistic relative visual localization for unmanned aerial vehicles. In: Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). London, Canada: IEEE, 2020. 1−4
    [83] Carlone L, Karaman S. Attention and anticipation in fast visual-inertial navigation. IEEE Transactions on Robotics, 2019, 35(1): 1−20 doi: 10.1109/TRO.2018.2872402
    [84] Tan C W, Park S. Design of accelerometer-based inertial navigation systems. IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2520−2530 doi: 10.1109/TIM.2005.858129
    [85] Zhao C H, Wang R Z, Zhang T W, Pan Q. Visual odometry and scene matching integrated navigation system in UAV. In: Proceedings of the 17th International Conference on Information Fusion (FUSION). Salamanca, Spain: IEEE, 2014. 1−6
    [86] Li Y J, Pan Q, Zhao C H, Yang F. Scene matching based EKF-SLAM visual navigation. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE, 2012. 5094−5099
    [87] Liu P D, Heng L, Sattler T, Geiger A, Pollefeys M. Direct visual odometry for a fisheye-stereo camera. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE, 2017. 1746−1752
    [88] Babu B W, Kim S, Yan Z X, Ren L. σ-DVO: Sensor noise model meets dense visual odometry. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Merida, Mexico: IEEE, 2016. 18−26
    [89] Buczko M, Willert V. How to distinguish inliers from outliers in visual odometry for high-speed automotive applications. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Gothenburg, Sweden: IEEE, 2016. 478−483
    [90] Steinbrücker F, Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Barcelona, Spain: IEEE, 2011. 719−722
    [91] Koide K, Yokozuka M, Oishi S, Banno A. Globally consistent 3D LiDAR mapping with GPU-accelerated GICP matching cost factors. IEEE Robotics and Automation Letters, 2021, 6(4): 8591−8598 doi: 10.1109/LRA.2021.3113043
    [92] Hesch J A, Kottas D G, Bowman S L, Roumeliotis S I. Consistency analysis and improvement of vision-aided inertial navigation. IEEE Transactions on Robotics, 2014, 30(1): 158−176 doi: 10.1109/TRO.2013.2277549
    [93] 朱启举, 樊振辉, 梅春波, 杨鹏翔, 卢宝峰, 杨朝明. 基于景象匹配的低精度MEMS航向修正与组合算法. 中国惯性技术学报, 2023, 31(9): 870−875

    Zhu Qi-Ju, Fan Zhen-Hui, Mei Chun-Bo, Yang Peng-Xiang, Lu Bao-Feng, Yang Chao-Ming. Heading correction and combination algorithm for MEMS with low accuracy based on scene matching. Journal of Chinese Inertial Technology, 2023, 31(9): 870−875
    [94] Yin X C, Wang X W, Du X G, Chen Q J. Scale recovery for monocular visual odometry using depth estimated with deep convolutional neural fields. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 5871−5879
    [95] Ye W C, Lan X Y, Chen S, Ming Y H, Yu X Y, Bao H J, et al. PVO: Panoptic visual odometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023. 9579−9589
    [96] Li C, Liu G C, Yuan Y. A multi-source image matching network for UAV visual location. In: Proceedings of the IEEE International Conference on Image Processing (ICIP). Bordeaux, France: IEEE, 2022. 1651−1655
    [97] Kinnari J, Renzulli R, Verdoja F, Kyrki V. LSVL: Large-scale season-invariant visual localization for UAVs. Robotics and Autonomous Systems, 2023, 168: Article No. 104497 doi: 10.1016/j.robot.2023.104497
    [98] Wen K L, Chu J, Chen J Y, Chen Y, Cai J P. M-O SiamRPN with weight adaptive joint MIoU for UAV visual localization. Remote Sensing, 2022, 14(18): Article No. 4467 doi: 10.3390/rs14184467
    [99] Dai M, Hu J H, Zhuang J D, Zheng E H. A transformer-based feature segmentation and region alignment method for UAV-view geo-localization. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4376−4389 doi: 10.1109/TCSVT.2021.3135013
    [100] Tian X Y, Shao J, Ouyang D Q, Shen H T. UAV-satellite view synthesis for cross-view geo-localization. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4804−4815 doi: 10.1109/TCSVT.2021.3121987
    [101] Zhu R Z, Yin L, Yang M Z, Wu F, Yang Y C, Hu W B. SUES-200: A multi-height multi-scene cross-view image benchmark across drone and satellite. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 4825−4839 doi: 10.1109/TCSVT.2023.3249204
    [102] Lang C B, Cheng G, Tu B F, Han J W. Global rectification and decoupled registration for few-shot segmentation in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: Article No. 5617211
    [103] Zhang B, Wu Y F, Zhao B Y, Chanussot J, Hong D F, Yao J, et al. Progress and challenges in intelligent remote sensing satellite systems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1814−1822 doi: 10.1109/JSTARS.2022.3148139
    [104] Zhang Z Y, Zheng L L, Piao Y, Tao S P, Xu W, Gao T, et al. Blind remote sensing image deblurring using local binary pattern prior. Remote Sensing, 2022, 14(5): Article No. 1276 doi: 10.3390/rs14051276
    [105] Guo J T, Zhang Z R, Mao Y C, Liu S J, Zhu W C, Yang T H. Automatic extraction of discontinuity traces from 3D rock mass point clouds considering the influence of light shadows and color change. Remote Sensing, 2022, 14(21): Article No. 5314 doi: 10.3390/rs14215314
    [106] Yao Y X, Zhang Y J, Wan Y, Liu X Y, Yan X H, Li J Y. Multi-modal remote sensing image matching considering co-occurrence filter. IEEE Transactions on Image Processing, 2022, 31: 2584−2597 doi: 10.1109/TIP.2022.3157450
    [107] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 248−255
    [108] Wang C H, Huang K Y, Yao Y, Chen J C, Shuai H H, Cheng W H. Lightweight deep learning: An overview. IEEE Consumer Electronics Magazine, 2024, 13(4): 51−64 doi: 10.1109/MCE.2022.3181759
    [109] Jiang C, Zhao D B, Zhang Q Z, Liu W K. A multi-GNSS/IMU data fusion algorithm based on the mixed norms for land vehicle applications. Remote Sensing, 2023, 15(9): Article No. 2439 doi: 10.3390/rs15092439
    [110] Bappy A M R A, Asfak-Ur-Rafi M, Islam M S, Sajjad A, Imran K N. Design and Development of Unmanned Aerial Vehicle (Drone) for Civil Applications. BRAC University, Bangladesh, 2015.
    [111] Alberts I L, Mercolli L, Pyka T, Prenosil G, Shi K Y, Rominger A, et al. Large language models (LLM) and ChatGPT: What will the impact on nuclear medicine be? European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50(6): 1549−1552 doi: 10.1007/s00259-023-06172-w
  • 加载中
计量
  • 文章访问数:  406
  • HTML全文浏览量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 录用日期:  2024-06-20
  • 网络出版日期:  2024-10-26

目录

    /

    返回文章
    返回