2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正系统分析的不确定非线性系统性能驱动控制方法

郭宗易 韩永麟 郭建国 胡冠杰

郭宗易, 韩永麟, 郭建国, 胡冠杰. 基于正系统分析的不确定非线性系统性能驱动控制方法. 自动化学报, 2025, 51(1): 133−143 doi: 10.16383/j.aas.c230752
引用本文: 郭宗易, 韩永麟, 郭建国, 胡冠杰. 基于正系统分析的不确定非线性系统性能驱动控制方法. 自动化学报, 2025, 51(1): 133−143 doi: 10.16383/j.aas.c230752
Guo Zong-Yi, Han Yong-Lin, Guo Jian-Guo, Hu Guan-Jie. Performance-driven control approach for uncertain nonlinear systems based on positive system analysis. Acta Automatica Sinica, 2025, 51(1): 133−143 doi: 10.16383/j.aas.c230752
Citation: Guo Zong-Yi, Han Yong-Lin, Guo Jian-Guo, Hu Guan-Jie. Performance-driven control approach for uncertain nonlinear systems based on positive system analysis. Acta Automatica Sinica, 2025, 51(1): 133−143 doi: 10.16383/j.aas.c230752

基于正系统分析的不确定非线性系统性能驱动控制方法

doi: 10.16383/j.aas.c230752 cstr: 32138.14.j.aas.c230752
基金项目: 国家自然科学基金(52272404, 92271109), 中央高校基本科研业务费, 西北工业大学硕士研究生实践创新基金(PF2024042)资助
详细信息
    作者简介:

    郭宗易:西北工业大学精确制导与控制研究所副研究员. 2017年获得西北工业大学博士学位. 主要研究方向为鲁棒控制, 耦合控制和智能控制及其飞行器应用. E-mail: guozongyi@nwpu.edu.cn

    韩永麟:西北工业大学精确制导与控制研究所硕士研究生. 2022年获得长安大学学士学位. 主要研究方向为飞行器制导控制和预设性能控制. E-mail: hanyonglin@mail.nwpu.edu.cn

    郭建国:西北工业大学精确制导与控制研究所教授. 2005年获得西北工业大学博士学位. 主要研究方向为飞行器制导控制技术. 本文通信作者. E-mail: guojianguo@nwpu.edu.cn

    胡冠杰:2024年获得西北工业大学博士学位. 主要研究方向为飞行器制导控制技术. E-mail: huguanjie1996@mail.nwpu.edu.cn

Performance-driven Control Approach for Uncertain Nonlinear Systems Based on Positive System Analysis

Funds: Supported by National Natural Science Foundation of China (52272404, 92271109), Fundamental Research Funds for the Central Universities, and Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (PF2024042)
More Information
    Author Bio:

    GUO Zong-Yi Associate researcher at the Institute of Precision Guidance and Control, Northwestern Polytechnical University. He received his Ph.D. degree from Northwestern Polytechnical University in 2017. His research interest covers robust control, coupling control, and intelligent control with their applications to flight vehicles

    HAN Yong-Lin Master student at the Institute of Precision Guidance and Control, Northwestern Polytechnical University. He received his bachelor degree from Chang'an University in 2022. His research interest covers guidance and control for flight vehicles and prescribed performance control

    GUO Jian-Guo Professor at the Institute of Precision Guidance and Control, Northwestern Polytechnical University. He received his Ph.D. degree from Northwestern Polytechnical University in 2005. His research interest covers guidance and control techniques for flight vehicles. Corresponding author of this paper

    HU Guan-Jie Received his Ph.D. degree from Northwestern Polytechnical University in 2024. His research interest covers guidance and control techniques for flight vehicles

  • 摘要: 针对一类不确定非线性系统, 提出一种保证系统状态满足预设边界性能函数的新型性能驱动控制(Performance-driven control, PDC)方法. 不同于传统预设性能控制(Prescribed performance control, PPC) 方法中对误差与边界性能函数的比值进行非线性变换的思路, 本文基于保证状态量与上下边界的两个误差量均始终非负这一思想, 引入基于Metzler矩阵的正系统分析理论, 并结合切换控制技术, 以最终保证系统状态始终在预设性能函数之内. 系统的稳定性取决于边界性能函数的选取, 而不改变控制器的形式. 给出针对一类不确定非线性系统的控制设计、稳定性分析和方法讨论, 数值仿真例子验证了所提出方法的有效性.
  • 图  1  性能驱动控制方法示意图

    Fig.  1  Schematic diagram of performance-driven control

    图  2  情况1下系统响应曲线

    Fig.  2  System response curves in case 1

    图  3  情况2下系统响应曲线

    Fig.  3  System response curves in case 2

    图  4  情况3下系统响应曲线

    Fig.  4  System response curves in case 3

    图  5  情况4下系统响应曲线

    Fig.  5  System response curves in case 4

  • [1] 张晋熙, 柴天佑, 王良勇. 时延非线性系统无模型预设性能控制. 自动化学报, 2024, 50(5): 937−946

    Zhang Jin-Xi, Chai Tian-You, Wang Liang-Yong. Model-free prescribed performance control of time-delay nonlinear systems. Acta Automatica Sinica, 2024, 50(5): 937−946
    [2] 曹承钰, 李繁飙, 廖宇新, 殷泽阳, 桂卫华. 高超声速变外形飞行器建模与固定时间预设性能控制. 自动化学报, 2024, 50(3): 486−504

    Cao Cheng-Yu, Li Fan-Biao, Liao Yu-Xin, Yin Ze-Yang, Gui Wei-Hua. Modeling and fixed-time prescribed performance control for hypersonic morphing vehicle. Acta Automatica Sinica, 2024, 50(3): 486−504
    [3] 高振宇, 孙振超, 郭戈. 考虑执行器非线性的固定时间全局预设性能车辆队列控制. 自动化学报, 2024, 50(2): 320−333

    Gao Zhen-Yu, Sun Zhen-Chao, Guo Ge. Fixed-time global prescribed performance control for vehicular platoons with actuator nonlinearities. Acta Automatica Sinica, 2024, 50(2): 320−333
    [4] Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control, 2008, 53(9): 2090−2099 doi: 10.1109/TAC.2008.929402
    [5] Bechlioulis C P, Rovithakis G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica, 2009, 45(2): 532−538 doi: 10.1016/j.automatica.2008.08.012
    [6] Sun Z C, Gao Z Y, Guo G, Wen S X. Finite-time control of vehicular platoons with global prescribed performance and actuator nonlinearities. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1768−1779 doi: 10.1109/TIV.2023.3292393
    [7] Liang Z C, Wang Z N, Zhao J, Wong P K, Yang Z X, Ding Z T. Fixed-time prescribed performance path-following control for autonomous vehicle with complete unknown parameters. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8426−8436 doi: 10.1109/TIE.2022.3210544
    [8] Zhao K, Song Y D, Chen C L P, Chen L. Adaptive asymptotic tracking with global performance for nonlinear systems with unknown control directions. IEEE Transactions on Automatic Control, 2022, 67(3): 1566−1573 doi: 10.1109/TAC.2021.3074899
    [9] Zhao K, Chen J W. Adaptive neural quantized control of MIMO nonlinear systems under actuation faults and time-varying output constraints. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3471−3481 doi: 10.1109/TNNLS.2019.2944690
    [10] Bu X W, Jiang B X, Feng Y A. Hypersonic tracking control under actuator saturations via readjusting prescribed performance functions. ISA Transactions, 2023, 134: 74−85 doi: 10.1016/j.isatra.2022.08.016
    [11] Guo Z Y, Gu X Y, Han Y L, Guo J G, Berger T. Maneuvering tracking algorithm for reentry vehicles with guaranteed prescribed performance. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 3012−3020 doi: 10.1109/TAES.2024.3357649
    [12] Ren Y W, Geng Y H, Cao Q, Wu F. Finite-time prescribed performance control for approaching non-cooperative target's feature surface. Nonlinear Dynamics, 2024, 112(11): 9179−9193 doi: 10.1007/s11071-024-09534-7
    [13] Zhou X Y, Wang H P, Tian Y. Robust adaptive flexible prescribed performance tracking and vibration control for rigid-flexible coupled robotic systems with input quantization. Nonlinear Dynamics, 2024, 112(3): 1951−1969 doi: 10.1007/s11071-023-09139-6
    [14] Min X, Baldi S, Yu W W, Cao J D. Low-complexity control with funnel performance for uncertain nonlinear multiagent systems. IEEE Transactions on Automatic Control, 2024, 69(3): 1975−1982 doi: 10.1109/TAC.2023.3302855
    [15] Berger T, Le H H, Reis T. Funnel control for nonlinear systems with known strict relative degree. Automatica, 2018, 87: 345−357 doi: 10.1016/j.automatica.2017.10.017
    [16] Berger T. Tracking with prescribed performance for linear non-minimum phase systems. Automatica, 2020, 115: Article No. 108909 doi: 10.1016/j.automatica.2020.108909
    [17] Xiao W, Belta C. High order control barrier functions. IEEE Transactions on Automatic Control, 2022, 67(7): 3655−3662 doi: 10.1109/TAC.2021.3105491
    [18] Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918−927 doi: 10.1016/j.automatica.2008.11.017
    [19] 段广仁. 高阶系统方法——I. 全驱系统与参数化设计. 自动化学报, 2020, 46(7): 1333−1345

    Duan Guang-Ren. High-order system approaches: I. Fully-actuated systems and parametric designs. Acta Automatica Sinica, 2020, 46(7): 1333−1345
    [20] Narendra K S, Shorten R. Hurwitz stability of metzler matrices. IEEE Transactions on Automatic Control, 2010, 55(6): 1484−1487 doi: 10.1109/TAC.2010.2045694
    [21] Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. New York: Wiley & Sons, 2000.
    [22] Filippov A F. Differential Equations With Discontinuous Righthand Sides. Dordrecht: Kluwer Academic, 1988.
    [23] Cortes J. Discontinuous dynamical systems. IEEE Control Systems Magazine, 2008, 28(3): 36−73 doi: 10.1109/MCS.2008.919306
    [24] Edwards C, Spurgeon S K. Sliding Mode Control: Theory and Applications. London: Crc Press, 1988.
    [25] Yu S H, Yu X H, Shirinzadeh B J, Man Z H. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41(11): 1957−1964 doi: 10.1016/j.automatica.2005.07.001
    [26] Polyakov A, Fridman L. Stability notions and Lyapunov functions for sliding mode control systems. Journal of the Franklin Institute, 2014, 351(4): 1831−1865 doi: 10.1016/j.jfranklin.2014.01.002
    [27] 贾庆贤, 张迎春, 陈雪芹, 李化义. 卫星姿态控制系统故障重构观测器设计. 宇航学报, 2016, 37(4): 442−450

    Jia Qing-Xian, Zhang Ying-Chun, Chen Xue-Qin, Li Hua-Yi. Observer design for fault reconstruction in satellite attitude control system. Journal of Astronautics, 2016, 37(4): 442−450
    [28] Bu X W, He G J, Wei D Z. A new prescribed performance control approach for uncertain nonlinear dynamic systems via back-stepping. Journal of the Franklin Institute, 2018, 355(17): 8510−8536 doi: 10.1016/j.jfranklin.2018.09.001
  • 加载中
图(5)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  86
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 录用日期:  2024-06-28
  • 网络出版日期:  2024-07-22
  • 刊出日期:  2025-01-16

目录

    /

    返回文章
    返回