2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于逐层增量分解的深度网络神经元相关性解释方法

陈艺元 李建威 邵文泽 孙玉宝

陈艺元, 李建威, 邵文泽, 孙玉宝. 基于逐层增量分解的深度网络神经元相关性解释方法. 自动化学报, 2024, 50(9): 1−14 doi: 10.16383/j.aas.c230651
引用本文: 陈艺元, 李建威, 邵文泽, 孙玉宝. 基于逐层增量分解的深度网络神经元相关性解释方法. 自动化学报, 2024, 50(9): 1−14 doi: 10.16383/j.aas.c230651
Chen Yi-Yuan, Li Jian-Wei, Shao Wen-Ze, Sun Yu-Bao. Layer-wise increment decomposition-based neuron relevance explanation for deep networks. Acta Automatica Sinica, 2024, 50(9): 1−14 doi: 10.16383/j.aas.c230651
Citation: Chen Yi-Yuan, Li Jian-Wei, Shao Wen-Ze, Sun Yu-Bao. Layer-wise increment decomposition-based neuron relevance explanation for deep networks. Acta Automatica Sinica, 2024, 50(9): 1−14 doi: 10.16383/j.aas.c230651

基于逐层增量分解的深度网络神经元相关性解释方法

doi: 10.16383/j.aas.c230651
基金项目: 国家自然科学基金(61771250, 61972213, 62276139, U2001211)和青蓝工程资助
详细信息
    作者简介:

    陈艺元:南京邮电大学硕士研究生. 主要研究方向为深度学习模型的可解释性和迁移对抗攻击. E-mail: cyy280113999@gmail.com

    李建威:南京邮电大学硕士研究生. 主要研究方向为深度学习模型的迁移对抗攻击. E-mail: 1022010429@njupt.edu.cn

    邵文泽:南京邮电大学教授. 主要研究方向为计算成像、视觉感知、黑箱优化和可理解人工智能. 本文通信作者. E-mail: shaowenze@njupt.edu.cn

    孙玉宝:南京信息工程大学教授. 主要研究方向为计算机视觉、快照压缩成像、深度学习. E-mail: sunyb@nuist.edu.cn

Layer-wise Increment Decomposition-based Neuron Relevance Explanation for Deep Networks

Funds: Supported by National Natural Science Foundation of China (61771250, 61972213, 62276139, U2001211) and Qing Lan Project
More Information
    Author Bio:

    CHEN Yi-Yuan Master student at Nanjing University of Posts and Telecommunications. His research interest covers interpretability of deep learning models and transferable adversarial attacks

    LI Jian-Wei Master student at Nanjing University of Posts and Telecommunications. His research interest covers transferable adversarial attacks on deep learning models

    SHAO Wen-Ze Professor at Nanjing University of Posts and Telecommunications. His research interest covers computational imaging, visual perception, black-box optimization, and understandable artificial intelligence. Corresponding author of this paper

    SUN Yu-Bao Professor at Nanjing University of Information Science and Technology. His research interest covers computer vision, snapshot compressed imaging, and deep learning

  • 摘要: 神经网络的黑箱特性严重阻碍了人们关于网络决策的直观分析与理解. 尽管文献报道了多种基于神经元贡献度分配的决策解释方法, 但是现有方法的解释一致性难以保证, 鲁棒性更是有待改进. 本文从神经元相关性概念入手, 提出一种基于逐层增量分解的神经网络解释新方法LID-Taylor (Layer-wise increment decomposition), 且在此基础上先后引入针对顶层神经元相关性的对比提升策略, 以及针对所有层神经元相关性的非线性提升策略, 最后利用交叉组合策略得到最终方法SIG-LID-IG, 实现了决策归因性能的鲁棒跃升. 通过热力图对现有工作与提出方法的决策归因性能做了定性定量评估. 结果显示, SIG-LID-IG在神经元的正、负相关性的决策归因合理性上均可媲美甚至优于现有工作. SIG-LID-IG在多尺度热力图下同样取得了精确性更高, 鲁棒性更强的决策归因.
  • 图  1  Softmax函数

    Fig.  1  The Softmax function

    图  2  增量相关性的逐层分配与吸收

    Fig.  2  Layer-wise distribution and absorption of the increment relevance

    图  3  本文神经元相关性解释方法的全景图

    Fig.  3  Panorama of the neuron relevance explanation methods in this article

    图  4  SIG-LID-IG-s54321多尺度热力图

    Fig.  4  Multiscale heatmaps of SIG-LID-IG-s54321

    图  5  决策类别为牛獒时不同解释方法单尺度热力图展示 (从左至右: s5、s4、s3、s2、s1; 从上到下: SIG-LID-Taylor、LID-IG、SIG-LID-IG)

    Fig.  5  Single-scale heatmaps of different explanation methods when the decision category is bull mastiff (From left to right: s5, s4, s3, s2, s1; From top to bottom: SIG-LID-Taylor, LID-IG, SIG-LID-IG)

    图  6  决策类别为虎猫时不同解释方法单尺度热力图展示 (从左至右: s5、s4、s3、s2、s1; 从上到下: SIG-LID-Taylor、LID-IG、SIG-LID-IG)

    Fig.  6  Single-scale heatmaps of different explanation methods when the decision category is tiger cat (From left to right: s5, s4, s3, s2, s1; From top to bottom: SIG-LID-Taylor, LID-IG, SIG-LID-IG)

    图  7  不同方法的第5阶段单尺度热力图对比 (从左至右: GradCAM、LayerCAM、ScoreCAM、IG、LRP-0、SG-LRP-ZP、SIG-LID-Taylor、LID-IG、SIG-LID-IG)

    Fig.  7  Comparison of stage 5 single-scale heatmaps for different methods (From left to right: GradCAM, LayerCAM, ScoreCAM, IG, LRP-0, SG-LRP-ZP, SIG-LID-Taylor, LID-IG, SIG-LID-IG)

    图  8  不同方法的PC评估折线图

    Fig.  8  Line chart of PC evaluation of different methods

    图  9  LayerCAM与SIG-LID-IG在不同多尺度热力图下的PC评估折线图

    Fig.  9  Line chart of PC evaluation between LayerCAM and SIG-LID-IG with different multiscale heatmaps

    图  10  多尺度热力图

    Fig.  10  Multiscale heatmaps

    图  11  最小补丁热力图评估

    Fig.  11  Minimal patch evaluation of heatmaps

    图  12  多尺度热力图负相关性评价

    Fig.  12  Negative relevance evaluation of multiscale heatmaps

    图  13  SG-LRP-ZP和SIG-LID-IG的多尺度热力图对比

    Fig.  13  Comparison of multiscale heatmaps between SG-LRP-ZP and SIG-LID-IG

    图  14  热力图的归因鲁棒性 (左, 右分别对应大灰猫头鹰和墨西哥鲵的两组平移缩放样本; 上、下分别为ST-LID-Taylor和SIG-LID-Taylor的热力图结果)

    Fig.  14  Attribution robustness of heatmaps (Left and right correspond to the two groups of translation and scaling samples of great gray owl and Mexican salamander, respectively. The top and bottom show the heatmap results of ST-LID-Taylor and SIG-LID-Taylor, respectively)

    表  1  不同方法的逐层规则对比

    Table  1  Layer rule comparison of different methods

    方法名 LRP-0 LID-Taylor
    顶层 $e_c\odot Z$ $e_c\odot\Delta Z$
    线性层 LRP-0 LID-Taylor
    非线性层 Pass, WTA LID-Taylor
    方法名 ST-LID-Taylor SIG-LID-IG
    顶层 ST SIG
    线性层 LID-Taylor LID-Taylor*
    非线性层 LID-Taylor LID-IG
    下载: 导出CSV

    表  2  顶层相关性对比

    Table  2  Comparison of top layer relevance

    方法名顶层相关性
    LRP-0$e_c\odot Z$
    LID-Taylor$e_c\odot \Delta Z$
    SG-LRP$P_c'$
    ST-LID-Taylor$P_c'\odot \Delta Z$
    SIG-LID-IG$\bar{P}_c'\odot \Delta Z$
    下载: 导出CSV

    表  3  中间层规则对比

    Table  3  Comparison of middle layer rule

    方法名相关性计算规则
    LRP-0$R(Y^{l-1} )=\frac{R(Y^l)}{Y^l}\odot W^l\odot Y^{l-1}$
    DeepLIFT$R(Y^{l-1} )=\frac{R(Y^l)}{\Delta Y^l}\odot W^l\odot \Delta Y^{l-1}$
    LID-Taylor$R(Y^{l-1} )=\frac{R(Y^l)}{\Delta Y^l}\odot D^l\odot \Delta Y^{l-1}$
    LID-IG$R(Y^{l-1} )=\frac{R(Y^l)}{\Delta Y^l}\odot \bar{D}^l\odot \Delta Y^{l-1}$
    下载: 导出CSV

    表  4  本文方法SIG-LID-Taylor、LID-IG、SIG-LID-IG与ScoreCAM、IG的PC实验数值比较

    Table  4  Comparison of PC experimental values between the proposed methods SIG-LID-Taylor, LID-IG, SIG-LID-IG and ScoreCAM, IG

    比例IGScoreCAMSIG-LID-TaylorLID-IGSIG-LID-IG
    0.1−0.010 06−0.025 440.010 88−0.015 030.012 43
    0.2−0.032 59−0.037 00−0.017 05−0.029 540.000 25
    0.3−0.053 58−0.051 20−0.047 14−0.044 54−0.017 88
    0.4−0.075 42−0.068 61−0.078 46−0.064 28−0.041 39
    0.5−0.105 52−0.092 72−0.113 35−0.090 19−0.071 76
    0.6−0.148 30−0.131 05−0.160 32−0.133 97−0.115 59
    0.7−0.212 55−0.193 31−0.222 92−0.200 09−0.185 15
    0.8−0.308 24−0.287 81−0.321 89−0.298 01−0.287 73
    0.9−0.456 71−0.436 46−0.465 28−0.449 57−0.444 88
    下载: 导出CSV
  • [1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84−90 doi: 10.1145/3065386
    [2] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: ICLR, 2014, 1−14.
    [3] Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 1−9
    [4] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 770−778
    [5] Girshick R, Donahue J, Darrell T, Malik J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions On pattern Analysis and Machine Intelligence, 2016, 38(1): 142−158 doi: 10.1109/TPAMI.2015.2437384
    [6] Girshick R. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 1440−1448
    [7] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I J, et al. Intriguing properties of neural networks. In: Proceedings of the 2nd International Conference on Learning Representations. Banff, Canada: ICLR, 2014.
    [8] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 818−833
    [9] Erhan D, Bengio Y, Courville A, Vincent P. Visualizing Higher-layer Features of A Deep Network, Technical Report 1341, University of Montreal, 2009.
    [10] Zhou B L, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 2921−2929
    [11] Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 618−626
    [12] Jiang P T, Zhang C B, Hou Q B, Cheng M M, Wei Y C. LayerCAM: Exploring hierarchical class activation maps for localization. IEEE Transactions on Image Processing, 2021, 30: 5875−5888 doi: 10.1109/TIP.2021.3089943
    [13] Wang H F, Wang Z F, Du M N, Yang F, Zhang Z J, Ding S R, et al. Score-CAM: Score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE, 2020. 111−119
    [14] Bach S, Binder A, Montavon G, Klauschen F, Müller K R, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One, 2015, 10(7): Article No. e0130140 doi: 10.1371/journal.pone.0130140
    [15] Montavon G, Binder A, Lapuschkin S, Samek W, Müller K R. Layer-wise relevance propagation: An overview. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer, 2019. 193−209
    [16] Samek W, Montavon G, Lapuschkin S, AndersC J, Müller K R. Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 2021, 109(3): 247−278 doi: 10.1109/JPROC.2021.3060483
    [17] Montavon G, Samek W, Müller K R. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 2018, 73: 1−15 doi: 10.1016/j.dsp.2017.10.011
    [18] Montavon G, Lapuschkin S, Binder A, Samek W, Müller K R. Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognition, 2017, 65: 211−222 doi: 10.1016/j.patcog.2016.11.008
    [19] Gu J D, Yang Y C, Tresp V. Understanding individual decisions of CNNs via contrastive backpropagation. In: Proceedings of the 14th Asian Conference on Computer Vision. Perth, Australia: Springer, 2018. 119−134
    [20] Iwana B K, Kuroki R, Uchida S. Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Seoul, Korea (South): IEEE, 2019. 4176−4185
    [21] Sundararajan M, Taly A, Yan Q Q. Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017. 3319−3328
    [22] Lundberg S M, Lee S I. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 4768−4777
    [23] Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017. 3145−3153
    [24] Colley S J. Vector Calculus (Fourth edition). Boston: Pearson, 2011.
  • 加载中
计量
  • 文章访问数:  79
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-23
  • 录用日期:  2024-04-29
  • 网络出版日期:  2024-06-03

目录

    /

    返回文章
    返回