2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于观测器的人在环多机械臂系统预设性能二分一致性

刘沛明 郭祥贵

刘沛明, 郭祥贵. 基于观测器的人在环多机械臂系统预设性能二分一致性. 自动化学报, 2024, 50(9): 1761−1771 doi: 10.16383/j.aas.c230622
引用本文: 刘沛明, 郭祥贵. 基于观测器的人在环多机械臂系统预设性能二分一致性. 自动化学报, 2024, 50(9): 1761−1771 doi: 10.16383/j.aas.c230622
Liu Pei-Ming, Guo Xiang-Gui. Observer-based prescribed performance bipartite consensus for human-in-the-loop multi-manipulator systems. Acta Automatica Sinica, 2024, 50(9): 1761−1771 doi: 10.16383/j.aas.c230622
Citation: Liu Pei-Ming, Guo Xiang-Gui. Observer-based prescribed performance bipartite consensus for human-in-the-loop multi-manipulator systems. Acta Automatica Sinica, 2024, 50(9): 1761−1771 doi: 10.16383/j.aas.c230622

基于观测器的人在环多机械臂系统预设性能二分一致性

doi: 10.16383/j.aas.c230622 cstr: 32138.14.j.aas.c230622
基金项目: 雄安新区科技创新专项 (2023XAGG0062), 国家自然科学基金 (62173028, 62233015), 广东省基础与应用基础研究基金 (2024A1515011493), 北京自然科学基金 (4232060, IS23065)资助
详细信息
    作者简介:

    刘沛明:北京科技大学自动化学院博士研究生. 主要研究方向为多智能体系统, 容错控制. E-mail: liupeiming1783@126.com

    郭祥贵:北京科技大学自动化学院教授. 2012年获得东北大学控制科学与工程专业博士学位. 主要研究方向为多智能体系统, 模糊系统, 车辆队列控制和容错控制. 本文通信作者. E-mail: guoxianggui@163.com

Observer-based Prescribed Performance Bipartite Consensus for Human-in-the-loop Multi-manipulator Systems

Funds: Supported by Science, Technology & Innovation Project of Xiongan New Area (2023XAGG0062), National Natural Science Foundation of China (62173028, 62233015), Guangdong Basic and Applied Basic Research Foundation (2024A1515011493), and Beijing Natural Science Foundation (4232060, IS23065)
More Information
    Author Bio:

    LIU Pei-Ming Ph.D. candidate at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. His research interest covers multi-agent systems and fault-tolerant control

    GUO Xiang-Gui Professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. He received his Ph.D. degree in control science and engineering from Northeastern University in 2012. His research interest covers multi-agent systems, fuzzy systems, vehicular platoon control, and fault-tolerant control. Corresponding author of this paper

  • 摘要: 研究通讯拓扑为符号有向图的人在环多机械臂系统的预设性能二分一致性跟踪控制问题. 为在预设时间内收敛到预设精度, 提出一种基于观测器的预设性能控制策略. 首先, 设计预设时间和精度的观测器以估计领导者的输出信息, 通过合作/竞争信息交互实现观测器输出的二分一致性. 该观测器不需要领导机械臂的输入信息及输出信息的高阶导数, 并通过无芝诺行为的事件触发机制降低不同机械臂间的通讯负担. 其次, 通过反步法及误差转化法将有约束的机械臂输出跟踪问题转化为无约束的误差系统稳定性问题, 进而基于观测器输出设计机械臂的输出调节控制器. 值得一提的是, 设计的控制策略不需要系统初始状态的先验知识且避免了预设时刻控制增益无穷大的现象, 增强了系统的可靠性. 最后, 仿真结果表明所提控制策略的可行性及优越性.
  • 图  1  手势及机械臂示意图

    Fig.  1  Schematic diagram of gesture and manipulator

    图  2  控制结构示意图

    Fig.  2  Schematic diagram of the control structure

    图  3  不同机械臂间的通讯拓扑

    Fig.  3  Communication topology among different manipulators

    图  4  不同机械臂的角度轨迹

    Fig.  4  Angle trajectories of different manipulators

    图  7  观测器和机械臂性能

    Fig.  7  Performance of observers and manipulators

    图  5  不同机械臂的触发时刻

    Fig.  5  Trigger instants of different manipulators

    图  6  基于控制器(T2.2)的仿真结果

    Fig.  6  Simulation results based on the controller (T2.2)

    图  8  不同控制方法的跟踪误差

    Fig.  8  Tracking errors of different control methods

    图  9  不同控制方法的比较

    Fig.  9  Comparison of different control methods

    表  1  手势与领导机械臂动作的对应关系

    Table  1  The corresponding relationship between the gesture and the action of the leader manipulator

    手势 动作 $u_0$
    逆时针挥动 逆时针转动 $u_0=\Im_g\;{\rm{tanh}}(v_g)$
    顺时针挥动 顺时针转动 $u_0=-\Im_g\;{\rm{tanh}}(v_g)$
    注: $\Im_g>0$ 和$v_g>0$分别为放大系数及经过预处理的手势挥动速度.
    下载: 导出CSV

    表  2  预设性能反步控制器

    Table  2  Prescribed performance backstepping controller

    虚拟控制器
    $\alpha_{i}=-\dfrac{\kappa_{i,\;2}+\varphi_{i,\;1}}{\kappa_{i,\;1}}+v_i$ (T2.1)
    $\kappa_{i,\;1}=\left\{\begin{aligned} &\dfrac{1}{h(\xi_i)}-\dfrac{4\delta_i q}{l_{2i}h^2(\xi_i)}(\dfrac{\xi_i}{l_{2i}}-1)^{2q-1}\tilde{y}_{i}^2>0,\; \\ &\qquad \qquad 0<\xi_i< l_{2i}\\ &1,\;\qquad \;\;\xi_i\ge l_{2i} \end{aligned}\right.$
    $\kappa_{i,\;2}=\left\{\begin{aligned} &\dfrac{4\delta_{i}q}{l_{2i}h^2(\xi_i)}(\dfrac{\xi_i}{l_{2i}}-1)^{2q-1}\beta\dot{\beta}\tilde{y}_{i},&&0<\xi_{i}< l_{2i} \\&0,&& \xi_i\ge l_{2i} \end{aligned}\right.$
    控制器
    $u_{i}=-\dfrac{1}{2}\varphi_{i,\;2}-\kappa_{i,\;1}\varphi_{i,\;1}-\hat{\Phi}_{i}^{\rm T}\Gamma(Z_{i})+\dot{\alpha}^c_{i}$ (T2.2)
    $\dot{\hat{\Phi}}_{i}=-r_{i,\;1}\hat{\Phi}_{i}+r_{i,\;2}\varphi_{i,\;2}\Gamma(Z_{i})$ (T2.3)
    其中, $r_{i,\;1}$和$r_{i,\;2}$为正常数, $Z_{i}=[x_{i,\;1},\;x_{i,\;2}]^{\rm T}$.
    下载: 导出CSV

    表  3  控制器参数

    Table  3  Parameters of the controllers

    参数参数参数
    $c_1$20$c_2$15$o_1$$[0.8,\; 0.5]^{\rm T}$
    $l_{1i}$2.100$l_{2i}$1.500$o_2$$[2.8,\; 2.5]^{\rm T}$
    $r_{i,\;1}$0.001$r_{i,\;2}$0.500$o_3$$[1.1,\; 1.5]^{\rm T}$
    $b_i$5$c_3$0.001$\pi_1$$1.5$
    $\psi_j$3$\nu_i$0.001$\pi_2$$3.0$
    $\delta_i$140$M_1$3$\pi_3$$2.0$
    下载: 导出CSV
  • [1] Mattila J, Koivumäki J, Caldwell D G, Semini C. A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 669−680 doi: 10.1109/TMECH.2017.2668604
    [2] Zhai J Y, Xu G. A novel non-singular terminal sliding mode trajectory tracking control for robotic manipulators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(1): 391−395
    [3] He W, Ouyang Y C, Hong J. Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Transactions on Industrial Informatics, 2017, 13(1): 48−59 doi: 10.1109/TII.2016.2608739
    [4] Ning B D, Han Q L, Zuo Z Y. Bipartite consensus tracking for second-order multiagent systems: A time-varying function-based preset-time approach. IEEE Transactions on Automatic Control, 2021, 66(6): 2739−2745 doi: 10.1109/TAC.2020.3008125
    [5] Guo H Z, Chen M, Jiang Y H, Lungu M. Distributed adaptive human-in-the-loop event-triggered formation control for QUAVs with quantized communication. IEEE Transactions on Industrial Informatics, 2023, 19(6): 7572−7582 doi: 10.1109/TII.2022.3211508
    [6] Cao Y C, Yu W W, Ren W, Chen G R. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial Informatics, 2013, 9(1): 427−438 doi: 10.1109/TII.2012.2219061
    [7] Liu P M, Guo X G, Wang J L, Xie X P, Yang F W. Fully distributed hierarchical ET intrusion-and fault-tolerant group control for MASs with application to robotic manipulators. IEEE Transactions on Automation Science and Engineering, 2024, 21 (3): 2868−2881 doi: 10.1109/TASE.2023.3270489
    [8] 徐君, 张国良, 曾静, 孙巧, 羊帆. 具有时延和切换拓扑的高阶离散时间多智能体系统鲁棒保性能一致性. 自动化学报, 2019, 45(2): 360−373

    Xu Jun, Zhang Guo-Liang, Zeng Jing, Sun Qiao, Yang Fan. Robust guaranteed consensus for high-order discrete-time multi-agent systems with switching topologies and time delay. Acta Automatica Sinica, 2019, 45(2): 360−373
    [9] Guo X G, Zhang D Y, Wang J L, Ahn C K. Adaptive memory event-triggered observer-based control for nonlinear multi-agent systems under DoS attacks. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1644−1656 doi: 10.1109/JAS.2021.1004132
    [10] Chai J Y, Lu Q, Tao X D, Peng D L, Zhang B T. Dynamic event-triggered fixed-time consensus control and its applications to magnetic map construction. IEEE/CAA Journal of Automatica Sinica, 2023, 10(10): 2000−2013 doi: 10.1109/JAS.2023.123444
    [11] 郑维, 张志明, 刘和鑫, 张明泉, 孙富春. 基于线性变换的领导−跟随多智能体系统动态反馈均方一致性控制. 自动化学报, 2022, 48(10): 2474−2485

    Zheng Wei, Zhang Zhi-Ming, Liu He-Xin, Zhang Ming-Quan, Sun Fu-Chun. Dynamic feedback mean square consensus control based on linear transformation for leader-follower multi-agent systems. Acta Automatica Sinica, 2022, 48(10): 2474−2485
    [12] Lin G H, Li H Y, Ma H, Yao D Y, Lu R Q. Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults. IEEE/CAA Journal of Automatica Sinica, 2022, 9(1): 111−122 doi: 10.1109/JAS.2020.1003596
    [13] Zhang Y F, Wu Z G, Shi P. Resilient event-/self-triggering leader-following consensus control of multiagent systems against DoS attacks. IEEE Transactions on Industrial Informatics, 2023, 19(4): 5925−5934 doi: 10.1109/TII.2022.3187747
    [14] Zhao G L, Hua C C. Leaderless and leader-following bipartite consensus of multiagent systems with sampled and delayed information. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(5): 2220−2233 doi: 10.1109/TNNLS.2021.3106015
    [15] 马小陆, 谭毅波, 梅宏. 符号图下含扰动的多智能体系统预定时间二分一致性. 控制与决策, 2024, 39(5): 1517−1526

    Ma Xiao-Lu, Tan Yi-Bo, Mei Hong. Predefined-time bipartite consensus of multi-agent systems with disturbances under signed graph. Control and Decision, 2024, 39(5): 1517−1526
    [16] Zhao G L, Cui H L, Hua C C. Hybrid event-triggered bipartite consensus control of multiagent systems and application to satellite formation. IEEE Transactions on Automation Science and Engineering, 2023, 20(3): 1760−1771 doi: 10.1109/TASE.2022.3185643
    [17] 陈世明, 姜根兰, 张正. 通信受限的MAS二分实用一致性. 自动化学报, 2022, 48(5): 1318−1326

    Chen Shi-Ming, Jiang Gen-Lan, Zhang Zheng. Bipartite practical consensus control of multi-agent systems with communication constraints. Acta Automatica Sinica, 2022, 48(5): 1318−1326
    [18] Cai Y L, Zhang H G, Duan J, Zhang J. Distributed bipartite consensus of linear multiagent systems based on event-triggered output feedback control scheme. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(11): 6743−6756 doi: 10.1109/TSMC.2020.2964394
    [19] Wang X J, Niu B, Zhai L, Kong J, Wang X M. A novel distributed bipartite consensus control of nonlinear multiagent systems via prioritized strategy approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(6): 2852−2856
    [20] Tao M, Liu X Y, Shao S, Cao J D. Predefined-time bipartite consensus of networked Euler-Lagrange systems via sliding-mode control. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(12): 4989−4993
    [21] Lin G H, Li H Y, Ma H, Zhou Q. Distributed containment control for human-in-the-loop MASs with unknown time-varying parameters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(12): 5300−5311 doi: 10.1109/TCSI.2022.3205335
    [22] Wu H N, Zhang X M, Li R G. Synthesis with guaranteed cost and less human intervention for human-in-the-loop control systems. IEEE Transactions on Cybernetics, 2022, 52(8): 7541−7551 doi: 10.1109/TCYB.2020.3041033
    [23] Lin G H, Li H Y, Ahn C K, Yao D Y. Event-based finite-time neural control for human-in-the-loop UAV attitude systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10387−10397 doi: 10.1109/TNNLS.2022.3166531
    [24] Cao Y, Cao J F, Song Y D. Practical prescribed time tracking control over infinite time interval involving mismatched uncertainties and non-vanishing disturbances. Automatica, 2022, 136: Article No. 110050 doi: 10.1016/j.automatica.2021.110050
    [25] Li Y X, Wei M, Tong S C. Event-triggered adaptive neural control for fractional-order nonlinear systems based on finite-time scheme. IEEE Transactions on Cybernetics, 2022, 52(9): 9481−9489 doi: 10.1109/TCYB.2021.3056990
    [26] Li K W, Li Y M, Zong G D. Adaptive fuzzy fixed-time decentralized control for stochastic nonlinear systems. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3428−3440 doi: 10.1109/TFUZZ.2020.3022570
    [27] 孙梦薇, 任璐, 刘剑, 孙长银. 切换拓扑下动态事件触发多智能体系统固定时间一致性. 自动化学报, 2023, 49(6): 1295−1305

    Sun Meng-Wei, Ren Lu, Liu Jian, Sun Chang-Yin. Dynamic event-triggered fixed-time consensus control of multi-agent systems under switching topologies. Acta Automatica Sinica, 2023, 49(6): 1295−1305
    [28] Zhou B, Zhang K K, Jiang H Y. Prescribed-time control of perturbed nonholonomic systems by time-varying feedback. Automatica, 2023, 155: Article No. 111125 doi: 10.1016/j.automatica.2023.111125
    [29] Li W Q, Krstic M. Prescribed-time output-feedback control of stochastic nonlinear systems. IEEE Transactions on Automatic Control, 2023, 68(3): 1431−1446 doi: 10.1109/TAC.2022.3151587
    [30] Lyu D, Sun M, Jia Q. Event-based prescribed-time synchronization of directed dynamical networks with Lipschitzian nodal dynamics. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 1847−1851
    [31] Liu Y J, Zeng Q, Tong S C, Chen C L P, Liu L. Actuator failure compensation-based adaptive control of active suspension systems with prescribed performance. IEEE Transactions on Industrial Electronics, 2020, 67(8): 7044−7053 doi: 10.1109/TIE.2019.2937037
    [32] Bechlioulis C P, Rovithakis G A. Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(5): 1220−1226 doi: 10.1109/TAC.2010.2042508
    [33] Chen P H, Luan X L, Liu F. MT-filters-based event-triggered adaptive prescribed performance tracking control of multi-agent systems with unknown direction actuator failure. International Journal of Robust and Nonlinear Control, 2023, 33(14): 8224−8253 doi: 10.1002/rnc.6817
    [34] Liu D C, Liu Z, Chen C L P, Zhang Y. Prescribed-time containment control with prescribed performance for uncertain nonlinear multi-agent systems. Journal of the Franklin Institute, 2021, 358(3): 1782−1811 doi: 10.1016/j.jfranklin.2020.12.021
    [35] Wang H, Wen G H, Yu W W, Yu X H. Designing event-triggered observers for distributed tracking consensus of higher-order multiagent systems. IEEE Transactions on Cybernetics, 2022, 52(5): 3302−3313 doi: 10.1109/TCYB.2020.3010947
    [36] Liu P M, Guo X G, Wang J L, Coutinho D, Wu Z G. Preset-time and preset-accuracy human-in-the-loop cluster consensus control for MASs under stochastic actuation attacks. IEEE Transactions on Automatic Control, 2024, 69(3): 1675−1688 doi: 10.1109/TAC.2023.3326059
    [37] Ma Q, Wang Z, Miao G Y. Second-order group consensus for multi-agent systems via pinning leader-following approach. Journal of the Franklin Institute, 2014, 351(3): 1288−1300 doi: 10.1016/j.jfranklin.2013.11.002
    [38] Lu H Q, Hu Y, Guo C Q, Zhou W N. Cluster synchronization for a class of complex dynamical network system with randomly occurring coupling delays via an improved event-triggered pinning control approach. Journal of the Franklin Institute, 2020, 357(4): 2167−2184 doi: 10.1016/j.jfranklin.2019.11.076
    [39] Dong W J, Farrell J A, Polycarpou M M, Djapic V, Sharma M. Command filtered adaptive backstepping. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566−580 doi: 10.1109/TCST.2011.2121907
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  93
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-09-19

目录

    /

    返回文章
    返回