2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扩展目标跟踪中基于深度强化学习的传感器管理方法

张虹芸 陈辉 张文旭

张虹芸, 陈辉, 张文旭. 扩展目标跟踪中基于深度强化学习的传感器管理方法. 自动化学报, 2024, 50(7): 1001−1015 doi: 10.16383/j.aas.c230591
引用本文: 张虹芸, 陈辉, 张文旭. 扩展目标跟踪中基于深度强化学习的传感器管理方法. 自动化学报, 2024, 50(7): 1001−1015 doi: 10.16383/j.aas.c230591
Zhang Hong-Yun, Chen Hui, Zhang Wen-Xu. Sensor management method based on deep reinforcement learning in extended target tracking. Acta Automatica Sinica, 2024, 50(7): 1001−1015 doi: 10.16383/j.aas.c230591
Citation: Zhang Hong-Yun, Chen Hui, Zhang Wen-Xu. Sensor management method based on deep reinforcement learning in extended target tracking. Acta Automatica Sinica, 2024, 50(7): 1001−1015 doi: 10.16383/j.aas.c230591

扩展目标跟踪中基于深度强化学习的传感器管理方法

doi: 10.16383/j.aas.c230591
基金项目: 国家自然科学基金(62163023, 62366031, 62363023, 61873116), 甘肃省教育厅产业支撑计划项目(2021CYZC-02), 2024年度甘肃省重点人才项目资助
详细信息
    作者简介:

    张虹芸:兰州理工大学电气工程与信息工程学院博士研究生. 2021年获得成都信息工程大学学士学位. 主要研究方向为雷达目标跟踪, 传感器管理和深度强化学习. E-mail: hy_zhang@lut.edu.cn

    陈辉:兰州理工大学电气工程与信息工程学院教授. 主要研究方向为智能感知和信息融合. 本文通信作者. E-mail: chenh@lut.edu.cn

    张文旭:兰州理工大学电气工程与信息工程学院副教授. 主要研究方向为深度强化学习, 智能决策与数据挖掘和机器人技术. E-mail: wenxu_zhang@foxmail.com

Sensor Management Method Based on Deep Reinforcement Learning in Extended Target Tracking

Funds: Supported by National Natural Science Foundation of China (62163023, 62366031, 62363023, 61873116), Gansu Province Education Department Industrial Support Project (2021CYZC-02), and Key Talent Project of Gansu Province in 2024
More Information
    Author Bio:

    ZHANG Hong-Yun Ph.D. candidate at the School of Electrical Engineering and Information Engineering, Lanzhou University of Technology. She received her bachelor degree from Chengdu University of Information Technology in 2021. Her research interest covers radar target tracking, sensor management, and deep reinforcement learning

    CHEN Hui Professor at the Sch-ool of Electrical Engineering and Information Engineering, Lanzhou University of Technology. His research interest covers intellisense and information fusion. Corresponding author of this paper

    ZHANG Wen-Xu Associate professor at the School of Electrical Engineering and Information Engineering, Lanzhou University of Technology. His research interest covers deep reinforcement learning, intelligent decision and data mining, and robotics

  • 摘要: 针对扩展目标跟踪(Extended target tracking, ETT)优化中的传感器管理问题, 基于随机矩阵模型(Random matrices model, RMM)建模扩展目标, 提出一种基于深度强化学习(Deep reinforcement learning, DRL)的传感器管理方法. 首先, 在部分可观测马尔科夫决策过程(Partially observed Markov decision process, POMDP)理论框架下, 给出基于双延迟深度确定性策略梯度(Twin delayed deep deterministic policy gradient, TD3)算法的扩展目标跟踪传感器管理的基本方法; 其次, 利用高斯瓦瑟斯坦距离(Gaussian Wasserstein distance, GWD)求解扩展目标先验概率密度与后验概率密度之间的信息增益, 对扩展目标多特征估计信息进行综合评价, 进而以信息增益作为TD3算法奖励函数的构建; 然后, 通过推导出的奖励函数, 进行基于深度强化学习的传感器管理方法的最优决策; 最后, 通过构造扩展目标跟踪优化仿真实验, 验证了所提方法的有效性.
  • 图  1  扩展目标跟踪中传感器管理方法的研究框架

    Fig.  1  Research framework of sensor management method in extended target tracking

    图  2  传感器航向模型

    Fig.  2  Sensor heading model

    图  3  演员网络和评论家网络结构

    Fig.  3  Structures of actor network and critic network

    图  4  基于TD3的扩展目标跟踪算法伪代码流程图

    Fig.  4  Pseudocode flow chart of elliptical extended target tracking algorithm based on TD3

    图  5  传感器控制智能决策训练曲线

    Fig.  5  Training curve of intelligent decision-making for sensor control

    图  6  评论家网络1训练过程中的损失更新

    Fig.  6  Loss updates during training in critic network 1

    图  7  评论家网络2训练过程中的损失更新

    Fig.  7  Loss updates during training in critic network 2

    图  8  智能体动作选择三维图

    Fig.  8  The action of the agent is selected in three dimensions

    图  9  传感器控制轨迹对比

    Fig.  9  Comparison of sensor control trajectory

    图  10  扩展目标形状估计对比

    Fig.  10  Comparison of extended target shape estimation

    图  11  扩展目标形状估计细节放大图

    Fig.  11  Extended target shape estimation detail enlargement

    图  12  基于6种方法的质心估计误差

    Fig.  12  Centroid estimation error based on 6 methods

    图  13  基于6种方法的GWD

    Fig.  13  GWD based on 6 methods

    图  14  群目标队列变换

    Fig.  14  Queue transformation of a group target

    图  15  群目标轨迹跟踪图

    Fig.  15  Group target trajectory tracking diagram

    图  16  群目标轨迹跟踪估计细节放大图

    Fig.  16  Estimate detail enlarge image of group target trajectory tracking

    图  17  群目标跟踪场景中的传感器控制轨迹对比

    Fig.  17  Comparison of sensor control trajectory in group target tracking scenarios

    图  18  群目标编队第1次变换跟踪细节放大图

    Fig.  18  Group target formation the 1st transformation tracking detail enlarge image

    图  19  群目标编队第2次变换跟踪细节放大图

    Fig.  19  Group target formation the 2nd transformation tracking detail enlarge image

    图  20  基于6种方法的群目标质心的RMSE

    Fig.  20  RMSE of group target centroid based on 6 methods

    图  21  基于6种方法的群目标跟踪估计的GWD

    Fig.  21  GWD of group target tracking estimation based on 6 methods

    表  1  智能体训练参数

    Table  1  TD3 agent training parameters

    超参数名称 参数值
    评论家网络学习率${\alpha _Q}$ 0.001
    演员网络学习率${\beta _\mu }$ 0.0001
    训练批次大小$N$ 128
    经验回放单元${\cal{D}} $容量 $1 \times {10^4}$
    每幕最大时间步 $1 \times {10^3}$
    惯性更新率$\tau $ 0.002
    更新频率比$m$ 2
    折扣因子$\gamma $ 0.9
    下载: 导出CSV

    表  2  6种方法下质心误差的统计均值

    Table  2  Statistical average of centroid error under 6 methods

    实验方法质心误差统计均值(m)对比方法1提升率(%)
    方法10.5091
    方法20.47327
    方法30.450711
    方法40.434915
    方法50.397422
    方法60.384225
    下载: 导出CSV

    表  3  6种方法下GWD的统计均值

    Table  3  Statistical average of GWD under 6 methods

    实验方法 GWD统计均值(m) 对比方法1提升率(%)
    方法1 1.2848
    方法2 1.2373 4
    方法3 1.1751 9
    方法4 1.2042 6
    方法5 1.1565 10
    方法6 1.0612 17
    下载: 导出CSV

    表  4  6种方法下质心误差的统计均值

    Table  4  Statistical average of centroid error under 6 methods

    实验方法 质心误差统计均值(m) 对比方法1的提升率(%)
    方法1 0.4902
    方法2 0.4753 3
    方法3 0.4463 9
    方法4 0.4455 9
    方法5 0.4353 11
    方法6 0.4197 14
    下载: 导出CSV

    表  5  6种方法下GWD的统计均值

    Table  5  Statistical average of GWD under 6 methods

    实验方法 GWD的统计均值(m) 对比方法1提升率(%)
    方法1 20.8413
    方法2 20.6772 1
    方法3 20.0186 4
    方法4 20.0284 4
    方法5 19.7976 5
    方法6 19.2237 8
    下载: 导出CSV
  • [1] Misra S, Singh A, Chatterjee S, Mandal A K. QoS-aware sensor allocation for target tracking in sensor-cloud. Ad Hoc Networks, 2015, 33: 140−153 doi: 10.1016/j.adhoc.2015.04.009
    [2] Song H, Xiao M, Xiao J, Liang Y, Yang Z. A POMDP approach for scheduling the usage of airborne electronic countermeasures in air operations. Aerospace Science and Technology, 2016, 48: 86−93 doi: 10.1016/j.ast.2015.11.001
    [3] Yan J, Jiao H, Pu W, Shi C, Dai J, Liu H. Radar sensor network resource allocation for fused target tracking: A brief review. Information Fusion, 2022, 86: 104−115
    [4] Hero A O, Cochran D. Sensor management: Past, present, and future. IEEE Sensors Journal, 2011, 11(12): 3064−3075 doi: 10.1109/JSEN.2011.2167964
    [5] Bello L L, Lombardo A, Milardo S, Patti G, Reno M. Experimental assessments and analysis of an SDN framework to integrate mobility management in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5586−5595 doi: 10.1109/TII.2020.2963846
    [6] Newell D, Duffy M. Review of power conversion and energy management for low-power, low-voltage energy harvesting powered wireless sensors. IEEE Transactions on Power Electronics, 2019, 34(10): 9794−9805 doi: 10.1109/TPEL.2019.2894465
    [7] Shi C, Dai X, Wang Y, Zhou J, Salous S. Joint route optimization and multidimensional resource management scheme for airborne radar network in target tracking application. IEEE Systems Journal, 2021, 16(4): 6669−6680
    [8] Dai J, Pu W, Yan J, Shi Q, Liu H. Multi-UAV collaborative trajectory optimization for asynchronous 3D passive multitarget tracking. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1−16
    [9] Zuo L, Hu J, Sun H, Gao Y. Resource allocation for target tracking in multiple radar architectures over lossy networks. Signal Processing, 2023, 208: 108973−108984 doi: 10.1016/j.sigpro.2023.108973
    [10] Han D, Wu J, Zhang H, Shi L. Optimal sensor scheduling for multiple linear dynamical systems. Automatica, 2017, 75: 260−270 doi: 10.1016/j.automatica.2016.09.015
    [11] Ross S M, Cobb R G, Baker W P. Stochastic real-time optimal control for bearing-only trajectory planning. International Journal of Micro Air Vehicles, 2014, 6(1): 1−27 doi: 10.1260/1756-8293.6.1.1
    [12] Singh S S, Kantas N, Vo B N, Doucet A, Evans R J. Simulation-based optimal sensor scheduling with application to observer trajectory planning. Automatica, 2007, 43(5): 817−830 doi: 10.1016/j.automatica.2006.11.019
    [13] Panicker S, Gostar A K, Bab-Haidashar A, Hoseinnezhad R. Sensor control for selective object tracking using labeled multi-Bernoulli filter. In: Proceedings of the 21st International Conference on Information Fusion. Cambridge, UK: IEEE, 2018. 2218−2224
    [14] Song C, Zhang C, Shafieezadeh A, Xiao R. Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach. Reliability Engineering & System Safety, 2022, 217 : Article No. 108034
    [15] Gostar A K, Hoseinnezhad R, Bab-Hadiashar A. Sensor control for multi-object tracking using labeled multi-Bernoulli filter. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1−8
    [16] Gostar A K, Hoseinnezhad R, Bab-Hadiashar A. Multi-Bernoulli sensor control via minimization of expected estimation errors. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1762−1773 doi: 10.1109/TAES.2015.140211
    [17] Gostar A K, Hoseinnezhad R, Bab-Hadiashar A, Liu W. Sensor-management for multitarget filters via minimization of posterior dispersion. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2877−2884 doi: 10.1109/TAES.2017.2718280
    [18] Aughenbaugh J M, La Cour B R. Metric selection for information theoretic sensor management. In: Proceedings of the 11th International Conference on Information Fusion. Cologne, Germany: IEEE. 2008. 1−8
    [19] Ristic B, Vo B N, Clark D. A note on the reward function for PHD filters with sensor control. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1521−1529 doi: 10.1109/TAES.2011.5751278
    [20] Hoang H G, Vo B N, Vo B T, Mahler R. The Cauchy–Schwarz divergence for Poisson point processes. IEEE Transactions on Information Theory, 2015, 61(8): 4475−4485 doi: 10.1109/TIT.2015.2441709
    [21] Gostar A K, Hoseinnezhad R, Rathnayake T, Wang X, Bab-Hadiashar A. Constrained sensor control for labeled multi-Bernoulli filter using Cauchy-Schwarz divergence. IEEE Signal Processing Letters, 2017, 24(9): 1313−1317 doi: 10.1109/LSP.2017.2723924
    [22] Matsuo Y, LeCun Y, Sahani M, Precup D, Silver D, Sugiyama M, et al. Deep learning, reinforcement learning, and world models. Neural Networks, 2022, 152: 267−275 doi: 10.1016/j.neunet.2022.03.037
    [23] Wurman P R, Barrett S, Kawamoto K, MacGlashan J, Subramanian K, Walsh T J, et al. Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature, 2022, 602(7896): 223−228 doi: 10.1038/s41586-021-04357-7
    [24] Liu D, Wang Z, Lu B, Cong M, Yu H, Zou Q. A reinforcement learning-based framework for robot manipulation skill acquisition. IEEE Access, 2020, 8: 108429−108437 doi: 10.1109/ACCESS.2020.3001130
    [25] Berscheid L, Meißner P, Kröger T. Self-supervised learning for precise pick-and-place without object model. IEEE Robotics and Automation Letters, 2020, 5(3): 4828−4835 doi: 10.1109/LRA.2020.3003865
    [26] Luong N C, Hoang D T, Gong S, Niyato D, Wang P, Liang Y C, et al. Applications of deep reinforcement learning in communications and networking: A survey. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3133−3174
    [27] Oakes B, Richards D, Barr J, Ralph J. Double deep Q networks for sensor management in space situational awareness. In: Proceeding of the 25th International Conference on Information Fusion. Linköping, Sweden: IEEE, 2022. 1−6
    [28] Zheng L, Liu M, Zhang S. An end-to-end sensor scheduling method based on D3QN for underwater passive tracking in UWSNs. Journal of Network and Computer Applications, 2023, 219 : Article No. 103730
    [29] Schulman J, Levine S, Abbeel P, Jordan M, Moritz P. Trust region policy optimization. In: Proceedings of the International Conference on Machine Learning. Lille, France: PMLR, 2015. 1889−1897
    [30] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy optimization algorithms. arXiv preprint arXiv: 1707. 06347, 2017.
    [31] Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, et al. Continuous control with deep reinforcement learning. arXiv preprint arXiv: 1509.02971, 2015.
    [32] Fujimoto S, Hoof H, Meger D. Addressing function approximation error in actor-critic methods. In: Proceedings of the International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018. 1587−1596
    [33] Mosali N A, Shamsudin S S, Alfandi O, Omar R, Al-Fadhali N. Twin delayed deep deterministic policy gradient-based target tracking for unmanned aerial vehicle with achievement rewarding and multistage training. IEEE Access, 2022, 10: 23545−23559 doi: 10.1109/ACCESS.2022.3154388
    [34] Li B, Wu Y. Path planning for UAV ground target tracking via deep reinforcement learning. IEEE Access, 2020, 8: 29064−29074 doi: 10.1109/ACCESS.2020.2971780
    [35] Tuncer B, Ozkan E. Random matrix based extended target tracking with orientation: A new model and inference. IEEE Transactions on Signal Processing, 2021, 69: 1910−1923 doi: 10.1109/TSP.2021.3065136
    [36] Wahlstrom N, Ozkan E. Extended target tracking using Gaussian processes. IEEE Transactions on Signal Processing, 2015, 63(16): 4165−4178 doi: 10.1109/TSP.2015.2424194
    [37] Daniyan A, Lambotharan S, Deligiannis A, Gong Y, Chen W H. Bayesian multiple extended target tracking using labeled random finite sets and splines. IEEE Transactions on Signal Processing, 2018, 66(22): 6076−6091 doi: 10.1109/TSP.2018.2873537
    [38] Koch J W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aeros pace and Electronic Systems, 2008, 44(3): 1042−1059 doi: 10.1109/TAES.2008.4655362
    [39] Yang S, Baum M, Granström K. Metrics for performance evaluation of elliptic extended object tracking methods. In: Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Baden-Baden, Germany: IEEE, 2016. 523−528
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回