2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视觉的人体动作质量评价研究综述

沈媛媛 张燕明 沈燕飞

沈媛媛, 张燕明, 沈燕飞. 基于视觉的人体动作质量评价研究综述. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230551
引用本文: 沈媛媛, 张燕明, 沈燕飞. 基于视觉的人体动作质量评价研究综述. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230551
Shen Yuan-Yuan, Zhang Yan-Ming, Shen Yan-Fei. A survey of vision-based motion quality assessment. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230551
Citation: Shen Yuan-Yuan, Zhang Yan-Ming, Shen Yan-Fei. A survey of vision-based motion quality assessment. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230551

基于视觉的人体动作质量评价研究综述

doi: 10.16383/j.aas.c230551 cstr: 32138.14.j.aas.c230551
基金项目: 北京市自然科学基金(9234029), 国家自然科学基金(72071018), 中央高校基本科研业务费专项资金(2024JCYJ004)资助
详细信息
    作者简介:

    沈媛媛:北京体育大学体育工程学院讲师. 2020年获得中国科学院自动化研究所博士学位. 主要研究方向为智能体育与运动表现分析. 本文通信作者. E-mail: shenyuanyuan@bsu.edu.cn

    张燕明:中国科学院自动化研究所副研究员. 2011年获得中国科学院自动化所博士学位. 主要研究方向为结构预测方法, 图神经网络, 概率图模型. E-mail: ymzhang@nlpr.ia.ac.cn

    沈燕飞:北京体育大学体育工程学院教授. 2014年获得中国科学院大学博士学位. 主要研究方向为智能视频分析, 体育大数据, 智能体育装备. E-mail: syf@bsu.edu.cn

A Survey of Vision-based Motion Quality Assessment

Funds: Supported by National Science Foundation of Beijing (9234029), National Natural Science Foundation of China (72071018), and Fundamental Research Funds for the Central Universities (2024JCYJ004)
More Information
    Author Bio:

    SHEN Yuan-Yuan Lecturer at School of Sport Engineering, Beijing Sport University. She received her Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences in 2020. Her research interest covers intelligent sports and sports performance analysis. Corresponding author of this paper

    ZHANG Yan-Ming Associate Professor at Institute of Automation, Chinese Academy of Sciences. He received his Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences in 2011. His research interest covers structural prediction methods, graph neural networks and probabilistic graphical models

    SHEN Yan-Fei Professor at School of Sport Engineering, Beijing Sport University. He received his Ph.D. degree from Chinese Academy of Sciences in 2014. His research interest covers intelligent video analysis, sports big data and intelligent sports equipment

  • 摘要: 基于视觉的人体动作质量评价利用计算机视觉相关技术自动分析个体运动完成情况, 并为其提供相应的动作质量评价结果. 这已成为运动科学和人工智能交叉领域的一个热点研究问题, 在竞技体育、运动员选材、健身锻炼、运动康复等领域具有深远的理论研究意义和很强的实用价值. 本文将从数据获取及标注、运动特征表示、运动质量评价3个方面对涉及到的技术进行回顾分析, 对相关方法进行分类, 并比较分析不同方法在AQA-7、JIGSAWS、EPIC-Skills 2018三个数据集上的性能. 最后讨论未来可能的研究方向.
  • 图  1  文中总结的不同方法及其解决的主要问题

    Fig.  1  Different methods summarized in this article and the main issues they address

    图  2  网络的动作质量评价方法框架

    Fig.  2  A CNN framework for action quality assessment

    图  3  人体骨架示意图[76]

    Fig.  3  The schematic diagram of human skeleton[76]

    图  4  基于排序预测的方法

    Fig.  4  The method based on sorting model

    表  1  基于视觉的动作质量评价方法不同阶段的主要任务及存在的问题

    Table  1  Main tasks and existing challenges in different stages of vision-based action quality assessment

    阶段 主要任务 存在的问题
    运动数据获取 通过视觉传感器来收集和记录与运动相关的数据(RGB、深度图、骨架序列) 如何根据不同的应用场景选择适用的数据模态?如何确保专家的评分质量?
    运动特征表示 综合利用静态图像和人体运动等多方面信息, 设计具有区分性的特征向量以描述人体的运动过程 如何根据动作质量评价任务本身的特性学习具有强鉴别性的运动特征, 以有效地抽取和表示不同运动者在执行相同动作时的细微差异?
    运动质量评价 设计特征映射方式, 将提取的特征与相应的评分、评级或排序评价目标关联起来 如何在设计损失函数时考虑标注不确定性(如不同专家的评分差异)、同一动作之间的评分差异等问题?
    下载: 导出CSV

    表  2  主流的动作质量评估数据集总览

    Table  2  Brief overview of action quality evaluation dataset

    数据集动作类别样本数(受试者人数)标注类别应用场景数据模态发表年份
    Heian Shodan[25]114评级标注健身锻炼3D骨架2003
    FINA09 Dive[26]168评分标注体育赛事RGB视频2010
    MIT-Dive[8]1159评分标注、反馈标注体育赛事RGB视频2014
    MIT-Skate[8]1150评分标注体育赛事RGB视频2014
    SPHERE-Staircase2014[10]148评级标注运动康复3D骨架2014
    JIGSAWS[9]3103评级标注技能训练RGB视频、运动学数据2014
    SPHERE-Walking2015[16]140评级标注运动康复3D骨架2016
    SPHERE-SitStand2015[16]1109评级标注运动康复3D骨架2016
    LAM Exercise Dataset[23]5125评级标注运动康复3D骨架2016
    First-Person Basketball[27]148排序标注健身锻炼RGB视频2016
    UNLV-Dive[28]1370评分标注体育赛事RGB视频2017
    UNLV-Vault[28]1176评分标注体育赛事RGB视频2017
    UI-PRMD[20]10100评级标注运动康复3D骨架2018
    EPIC-Skills 2018[24]4216排序标注技能训练RGB视频2018
    Infant Grasp[29]194排序标注技能训练RGB视频2019
    AQA-7[30]71189评分标注体育赛事RGB视频2019
    MTL-AQA[31]11412评分标注体育赛事RGB视频2019
    FSD-10[32]101484评分标注体育赛事RGB视频2019
    Fis-V[33]1500评分标注体育赛事RGB视频2019
    BEST 2019[32]5500排序标注技能训练RGB视频2019
    KIMORE[22]578评分标注康复运动RGB、深度视频、3D骨架2019
    TASD-2(SyncDiving-3m)[34]1238评分标注体育赛事RGB视频2020
    TASD-2(SyncDiving-10m)[34]1368评分标注体育赛事RGB视频2020
    RG[35]41000评分标注体育赛事RGB视频2020
    QMAR[36]638评级标注运动康复RGB视频2020
    PISA[37]1992评级标注技能训练RGB视频、音频2021
    FR-FS[38]1417评分标注体育赛事RGB视频2021
    SMART[39]8640评分标注体育赛事、健身锻炼RGB视频2021
    Fitness-AQA[40]31000反馈标注健身锻炼RGB视频2022
    Finediving[41]13000评分标注体育赛事RGB视频2022
    LOGO[42]1200评分标注体育赛事RGB视频2022
    RFSJ[43]231304评分标注体育赛事RGB视频2023
    FineFS[44]21167评分标注体育赛事RGB视频、骨架数据2023
    AGF-Olympics[45]1500评分标注体育赛事RGB视频、骨架数据2024
    下载: 导出CSV

    表  3  两类运动特征表示方法优缺点对比

    Table  3  Advantage and disadvantage comparison for two types of motion feature methods

    方法分类 优点 缺点
    基于RGB信息的动作表示学习[11, 29, 47] 数据易获取包含关于动作的丰富视觉
    信息对环境要求较低, 适用性广
    数据量高, 存储和处理成本高易受光照、
    复杂背景等无关环境因素影响
    基于骨架序列的动作表示学习[4850] 冗余数据少、计算开销小对外部
    干扰的抗性较强
    对骨架序列的准确度要求高无法捕捉
    运动者与环境的交互信息
    下载: 导出CSV

    表  4  基于RGB信息的深度运动特征方法优缺点对比

    Table  4  Advantage and disadvantage comparison for RGB-based deep motion feature methods

    方法分类 优点 缺点
    基于卷积神经网络的动作特征
    表示方法[12, 24, 28, 3033, 48, 54, 59]
    简单易实现 无法充分捕捉动作特征的复杂性
    基于孪生网络的动作特征
    表示学习方法[24, 6264]
    便于建模动作之间的细微差异 计算复杂度较高需要构建有效的样本对
    基于时序分割的动作特征
    表示学习方法[44, 48, 59, 6568]
    降低噪声干扰更好地捕获动作的细节和变化 额外的分割标注信息片段划分不准确对性能影响较大
    基于注意力机制的动作特征表示
    学习方法[29, 3235, 38, 41, 4344, 6872]
    自适应性好对重要特征的捕获能力强可解释性较好 计算复杂度高、内存消耗大
    下载: 导出CSV

    表  5  基于骨架序列的深度运动特征方法优缺点对比

    Table  5  Advantage and disadvantage comparison for skeleton-based deep motion feature methods

    方法分类 优点 缺点
    ST-GCN[94] 模型结构简单, 易实现 长期依赖关系建模困难对细节特征的建模能力有限
    ST-GCN + LSTM[9596] 相比ST-GCN, 具有更优的时序建模能力 计算复杂度增加需要对LSTM的超参数精调
    改进的时空图卷积神经网络[49, 98] 能够对细节特征进行针对性建模 模型泛化性能不佳
    基于多模态的双流网络[99] 具有更加丰富的特征表示模型的整体鲁棒性更优 数据获取难度增加计算复杂度增加
    需要有效的模态特征融合策略
    下载: 导出CSV

    表  6  在体育评分数据集AQA-7上的不同方法性能对比

    Table  6  Action evaluation performance of various methods on sports scoring dataset AQA-7

    方法DivingGym VaultSkiingSnowboardSync. 3mSync. 10mAQA-7传统/深度发表时间
    Pose+DCT+SVR[8]0.530.10传统2014
    C3D+SVR[28]0.79020.68240.52090.40060.59370.91200.6937深度2017
    C3D+LSTM[28]0.60470.56360.45930.50290.79120.69270.6165深度2017
    All-action C3D+LSTM[30]0.61770.67460.49550.36480.84100.73430.6478深度2017
    Li et al.[11]0.80090.7028深度2018
    S3D[59]0.8600深度2018
    C3D-AVG-MTL[30]0.8808深度2019
    JRG[49]0.76300.73580.60060.54050.90130.92540.7849深度2019
    USDL[12]0.80990.75700.65380.71090.91660.88780.8102深度2020
    DML[62]0.69000.4400深度2020
    AIM[36]0.74190.72960.58900.49600.92980.90430.7789深度2020
    CoRe[63]0.88240.77460.71150.66240.94420.90780.8401深度2021
    Lei et al.[69]0.86490.7858深度2021
    EAGLE-EYE[99]0.83310.74110.66350.64470.91430.91580.8140深度2021
    TSA-Net[38]0.83790.80040.66570.69620.94930.93340.8476深度2021
    Adaptive[98]0.83060.75930.72080.69400.95880.92980.8500深度2021
    PCLN[64]0.86970.87590.77540.57780.96290.95410.8795深度2022
    TPT[70]0.89690.80430.73360.69650.94560.95450.8715深度2022
    下载: 导出CSV

    表  7  JIGSAW数据集上的不同方法性能对比

    Table  7  Action evaluation performance of various methods on JIGSAWS

    方法 数据模态 评价方法 技能水平
    划分
    交叉验证方法 评测指标 SU KT NP 发表时间
    k-NN[111] 运动特征 GRS 两类 LOSO Accuracy 0.897 0.821 2018
    LOUO Accuracy 0.719 0.729 2018
    LR[111] 运动特征 GRS 两类 LOSO Accuracy 0.899 0.823 2018
    LOUO Accuracy 0.744 0.702 2018
    SVM[111] 运动特征 GRS 两类 LOSO Accuracy 0.754 0.754 2018
    LOUO Accuracy 0.798 0.779 2018
    SMT[112] 运动特征 Self-proclaimed 三类 LOSO Accuracy 0.990 0.996 0.999 2018
    LOUO Accuracy 0.353 0.323 0.571 2018
    DCT[112] 运动特征 Self-proclaimed 三类 LOSO Accuracy 1.00 0.997 0.999 2018
    LOUO Accuracy 0.647 0.548 0.357 2018
    DFT[112] 运动特征 Self-proclaimed 三类 LOSO Accuracy 1.00 0.999 0.999 2018
    LOUO Accuracy 0.647 0.516 0.464 2018
    ApEn[112] 运动特征 Self-proclaimed 三类 LOSO Accuracy 1.00 0.999 1.00 2018
    LOUO Accuracy 0.882 0.774 0.857 2018
    CNN[103] 运动特征 Self-proclaimed 三类 LOSO Accuracy 0.934 0.898 0.849 2018
    CNN[103] 运动特征 GRS 三类 LOSO Accuracy 0.925 0.954 0.913 2018
    CNN[106] 运动特征 Self-proclaimed 三类 LOSO Micro f1 1.00 0.921 1.00 2018
    Macro f1 1.00 0.932 1.00 2018
    Forestier et al.[113] 运动特征 GRS 三类 LOSO Micro f1 0.897 0.611 0.963 2018
    Macro f1 0.867 0.533 0.958 2018
    S3D[59] 视频数据 GRS 三类 LOSO SRC 0.68 0.64 0.57 2018
    LOUO SRC 0.03 0.14 0.35 2018
    FCN[100] 运动特征 Self-proclaimed 三类 LOSO Micro f1 1.00 0.921 1.00 2019
    Macro f1 1.00 0.932 1.00 2019
    3D ConvNet(RGB)[104] 视频数据 Self-proclaimed 三类 LOSO Accuracy 1.00 0.958 0.964 2019
    3D ConvNet(OF)[104] 视频数据 Self-proclaimed 三类 LOSO Accuracy 1.00 0.951 1.00 2019
    JRG[49] 视频数据 GRS 三类 LOUO SRC 0.35 0.19 0.67 2019
    USDL[12] 视频数据 GRS 三类 4-fold cross validation SRC 0.71 0.71 0.69 2020
    AIM[34] 视频数据、
    运动特征
    GRS 三类 LOUO SRC 0.45 0.61 0.34 2020
    MTL-VF(ResNet)[114] 视频数据 GRS 三类 LOSO SRC 0.79 0.63 0.73 2020
    LOUO SRC 0.68 0.72 0.48 2020
    MTL-VF(C3D)[114] 视频数据 GRS 三类 LOSO SRC 0.77 0.89 0.75 2020
    LOUO SRC 0.69 0.83 0.86 2020
    CoRe[63] 视频数据 GRS 三类 4-fold cross validation SRC 0.84 0.86 0.86 2021
    VTPE[107] 视频数据、
    运动特征
    GRS 三类 LOUO SRC 0.45 0.59 0.65 2021
    4-fold cross validation SRC 0.83 0.82 0.76 2021
    ViSA[108] 视频数据 GRS 三类 LOSO SRC 0.84 0.92 0.93 2022
    LOUO SRC 0.72 0.76 0.90 2022
    4-fold cross validation SRC 0.79 0.84 0.86 2022
    Gao et. al[109] 视频数据、
    运动特征
    GRS 三类 LOUO SRC 0.60 0.69 0.66 2023
    4-fold cross validation SRC 0.83 0.95 0.83 2023
    Contra-Sformer[110] 视频数据 GRS 三类 LOSO SRC 0.86 0.89 0.71 2023
    LOUO SRC 0.65 0.69 0.71 2023
    下载: 导出CSV

    表  8  在EPIC-Skills 2018上的不同方法性能对比

    Table  8  Action evaluation performance of various methods on EPIC-Skills 2018

    方法Chopstick-UsingSurgeryDrawingRough-Rolling发表时间
    Siamese TSN with $L_{rank3}$[24]71.5%70.2%83.2%79.4%2018
    Rank-aware Attention[32]84.7%68.5%82.3%86.9%2019
    RNN-based Spatial Attention[29]85.5%73.1%85.3%82.7%2019
    Adaptive[98]87.7%71.9%88.2%88.5%2021
    下载: 导出CSV
  • [1] 朱煜, 赵江坤, 王逸宁, 郑兵兵. 基于深度学习的人体行为识别算法综述. 自动化学报, 2016, 42(6): 848−857

    Zhu Yu, Zhao Jiang-Kun, Wang Yi-Ning, Zheng Bing-Bing. A review of human action recognition based on deep learning. Acta Automatica Sinica, 2016, 42(6): 848−857
    [2] LEI Q, DU J X, ZHANG H B, Ye S, Chen D S. A survey of vision-based human action evaluation methods. Sensors, 2019, 19(19): 4129−4155 doi: 10.3390/s19194129
    [3] Ahad M A R, Antar A D, Shahid O. Vision-based action understanding for assistive healthcare: A short review. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, CA, USA: IEEE, 2019. 1−11
    [4] Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience, 2018, 2018
    [5] 郑太雄, 黄帅, 李永福, 冯明驰. 基于视觉的三维重建关键技术研究综述. 自动化学报, 2020, 46(4): 631−652

    Zheng Tai-Xiong, Huang Shuai, Li Yong-Fu, Feng Ming-Chi. Key techniques for vision based 3D reconstruction: A review. Acta Automatica Sinica, 2020, 46(4): 631−652
    [6] 林景栋, 吴欣怡, 柴毅, 尹宏鹏. 卷积神经网络结构优化综述. 自动化学报, 2020, 46(1): 24−37

    Lin Jing-Dong, Wu Xin-Yi, Chai Yi, Yin Hong-Peng. Structure optimization of convolutional neural networks: A survey. Acta Automatica Sinica, 2020, 46(1): 24−37
    [7] 张重生, 陈杰, 李岐龙, 邓斌权, 王杰, 陈承功. 深度对比学习综述. 自动化学报, 2023, 49(1): 15−39

    Zhang Chong-Sheng, Chen Jie, Li Qi-Long, Deng Bin-Quan, Wang Jie, Chen Cheng-Gong. Deep contrastive learning: A survey. Acta Automatica Sinica, 2023, 49(1): 15−39
    [8] PIRSIAVASH H, VONDRICK C, TORRALBA A. Assessing the quality of actions. In: Proceedings of European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 556−571
    [9] GAO Y, VEDULA S S, REILEY C E, Ahmidi N, Varadarajan B, Lin H C, et al. Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling. In: Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention Workshops. Boston, MA, USA: Springer, 2014. 3−12
    [10] PAIEMENT A, TAO L, HANNUNA S, Camplani M, Damen D, Mirmehdi M. Online quality assessment of human movement from skeleton data. In: Proceedings of the British Machine Vision Conference. Nottingham, UK: BMVA, 2014. 153−166
    [11] LI Y, CHAI X, CHEN X. End-to-end learning for action quality assessment. In: Proceedings of the Pacific Rim Conference on Multimedia. Hefei, China: Springer, 2018. 125−134
    [12] TANG Y, NI Z, ZHOU J H, ZHANG D Y, LU J W, Wu Y, et al. Uncertainty-aware score distribution learning for action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020. 9839−9848
    [13] Xu J, Yin S, Zhao G, Wang Z, Peng Y. FineParser: A Fine-grained Spatio-temporal Action Parser for Human-centric Action Quality Assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle WA, USA: IEEE, 2024. 14628−14637
    [14] Morgulev E, Azar O H, Lidor R. Sports analytics and the big-data era. International Journal of Data Science and Analytics, 2018, 5: 213−222
    [15] BUTEPAGE J, BLACK M J, KRAGIC D, Kjellström H. Deep representation learning for human motion prediction and classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017. 6158−6166
    [16] TAO L, PAIEMENT A, DAMEN D, Mirmedhi M, Hannuna S, Camplani M, et al. A comparative study of pose representation and dynamics modelling for online motion quality assessment. Computer Vision and Image Understanding, 2016, 148: 136−152 doi: 10.1016/j.cviu.2015.11.016
    [17] KHALID S, GOLDENBERG M, GRANTCHAROV T, TAATI B, RUDZICZ F. Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Network Open, 2020, 3(3): e201664−e201664 doi: 10.1001/jamanetworkopen.2020.1664
    [18] QIU Y, WANG J, JIN Z, CHEN H, ZHANG M, GUO L. Pose-guided matching based on deep learning for assessing quality of action on rehabilitation training. Biomedical Signal Processing and Control, 2022, 72: 103323−103333
    [19] NIEWIADOMSKI R, KOLYKHALOVA K, PIANA S, ALBORNO P, VOLPE G, CAMURRI A. Analysis of movement quality in full-body physical activities. ACM Transactions on Interactive Intelligent Systems, 2019, 9(1): 1−20
    [20] VAKANSKI A, JUN HP, PAUL D, BAKER R. A dataset of human body movements for physical rehabilitation exercises. Data, 2018, 3(1): 2 doi: 10.3390/data3010002
    [21] ALEXIADIS D S, KELLY P, DARAS P, O'CONNOR N E, BOUBEKEUR T, MOUSSA M B. Evaluating a dancer's performance using kinect-based skeleton tracking. In: Proceedings of the ACM International Conference on Multimedia. Scottsdale, AZ, USA: ACM, 2011. 659−662
    [22] CAPECCI M, CERAVOLO M G, FERRACUTI F, LARLORI S, MONTERIU A, ROMEO L, et al. The kimore dataset: Kinematic assessment of movement and clinical scores for remote monitoring of physical rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(7): 1436−1448 doi: 10.1109/TNSRE.2019.2923060
    [23] PARMAR P, MORRIS BT. Measuring the quality of exercises. In: Proceedings of the Aunual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, Florida, USA: IEEE, 2016. 2241−2244
    [24] DOUGHTY H, DAMEN D, MAYOL-CUEVAS W. Who's better? who's best? pairwise deep ranking for skill determination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018. 6057−6066
    [25] ILG W, MEZGER J, GIESE M. Estimation of skill levels in sports based on hierarchical spatio-temporal correspondences. In: Proceedings of the Joint Pattern Recognition Symposium. Springer, 2003: 523−531
    [26] WNUK K, SOATTO S. Analyzing diving: A dataset for judging action quality. In: Proceedings of the Asian Conference on Computer Vision. Queenstown, New Zealand: Springer, 2010. 266−276
    [27] BERTASillS G, SOO PARK H, YU S X, SHI J. Am I a baller? basketball performance assessment from first-person videos. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 2177−2185
    [28] PARMAR P, TRAN MORRIS B. Learning to score olympic events. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA: IEEE, 2017. 20−28
    [29] LI Z, HUANG Y, CAI M, SATO Y. Manipulation-skill assessment from videos with spatial attention network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Seoul, Korea: IEEE, 2019.
    [30] PARMAR P, MORRIS B. Action quality assessment across multiple actions. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Waikoloa Village, HI, USA: IEEE, 2019. 1468−1476
    [31] PARMAR P, MORRIS B T. What and how well you performed? a multitask learning approach to action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019. 304−313
    [32] DOUGHTY H, MAYOL-CUEVAS W, DAMEN D. The pros and cons: Rank-aware temporal attention for skill determination in long videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 7862−7871
    [33] XU C, FU Y, ZHANG B, JIANG Y G, XUE X. Learning to score figure skating sport videos. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(12): 4578−4590
    [34] GAO J, ZHENG W S, PAN J H, et al. An asymmetric modeling for action assessment. In: Proceedings of the European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 222−238
    [35] ZENG L A, HONG F T, ZHENG W S, et al. Hybrid dynanlic-static context-aware attention network for action assessment in long videos. In: Proceedings of the ACM International Conference on Multimedia. Seattle, WA, USA: ACM 2020. 2526−2534
    [36] SARDARI F, PAIEMENT A, HANNUNA S, MIRMEHDI M. Vi-net——view-invariant quality of human movement assessment. Sensors, 2020, 20(18): 5258−5263 doi: 10.3390/s20185258
    [37] PARMAR P, REDDY J, MORRIS B. Piano skills assessment. In: Proceedings of the International Workshop on Multimedia Signal Processing (MMSP). Tampere, Finland: IEEE, 2021. 1−5
    [38] WANG S, YANG D, ZHAI P, CHEN C, ZHANG L. Tsa-net: Tube self-attention network for action quality assessment. In: Proceedings of the International Conference on Multimedia. Chengdu, China: ACM, 2021. 4902−4910
    [39] CHEN X, PANG A, YANG W, MA Y, XU L, YU J. Sportscap: Monocular 3D human motion capture and fine-grained understanding in challenging sports videos. International Journal of Computer Vision, 2021, 129: 2846−2864 doi: 10.1007/s11263-021-01486-4
    [40] PARMAR P, GHARAT A, RHODIN H. Domain knowledge-informed self-supervised representations for workout form assessment. In: Proceedings of the European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 105−123
    [41] XU J, RAO Y, YU X, CHEN G, ZHOU J, LU J. Finediving: A fine-grained dataset for procedure-aware action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA: IEEE, 2022. 2949−2958
    [42] ZHANG S, DAI W, WANG S, SHEN X, LU J, ZHOU J, et al. Logo: A long-form video dataset for group action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada: IEEE, 2023. 2405−2414
    [43] LIU Y, CHENG X, IKENAGA T. A figure skating jumping dataset for replay-guided action quality assessment. In: Proceedings of the ACM International Conference on Multimedia. Ottawa, Canada: ACM, 2023. 2437−2445
    [44] JI Y, YE L, HUANG H, MAO L, ZHOU Y, GAO L. Localization-assisted uncertainty score disentanglement network for action quality assessment. In: Proceedings of the ACM International Conference on Multimedia. Ottawa, Canada: ACM 2023. 8590−8597
    [45] Zahan S, Hassan G M, Mian A. Learning sparse temporal video mapping for action quality assessment in floor gymnastics. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1−11
    [46] AHMIDI N, TAO L, SEFATI S, GAO Y, LEA C, HARO B, et al. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Transactions on Biomedical Engineering, 2017, 64(9): 2025−2041
    [47] LIAO Y, VAKANSKI A, XIAN M. A deep learning framework for assessing physical rehabilitation exercises. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(2): 468−477 doi: 10.1109/TNSRE.2020.2966249
    [48] LI Y, CHAI X, CHEN X. Scoringnet: learning key fragment for action quality assessment with ranking loss in skilled sports. In: Proceedings of the Asian Conference on Computer Vision. Perth, Western Australia: Springer, 2018. 149−164
    [49] PAN J H, GAO J, ZHENG W S. Action assessment by joint relation graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE 2019. 6331−6340
    [50] LEI Q, ZHANG H B, DU J X, HSIAO T, CHEN C. Learning effective skeletal representations on RGB video for fine-grained human action quality assessment. Electronics, 2020, 9(4): 568−587 doi: 10.3390/electronics9040568
    [51] GORDON A S. Automated video assessment of human performance. In: Proceedings of AI-ED. Washington, DC: 1995. 10−15
    [52] VENKATARAMAN V, VLACHOS I, TURAGA P. Dynamical regularity for action analysis. In: Proceedings of the British Machine Vision Conference. Swansea, UK: BMVA, 2015. 67−78
    [53] ZIA A, SHARMA Y, BETTADAPURA V, SARIN E L, PLOETZ T, CLEMENTS M, et al. Automated video-based assessment of surgical skills for training and evaluation in medical schools. International Journal of Computer Assisted Radiology and Surgery, 2016, 11: 1623−1636 doi: 10.1007/s11548-016-1468-2
    [54] Parmar P. On action quality assessment. Reno, USA: The University of Nevada, 2019.
    [55] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of the Advances in Neural Information Processing Systems. Cambridge, MA, US: ACM, 2014. 27−35
    [56] TRAN D, BOURDEV L, FERGUS R, TORRESANI L, PALURI M. Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 4489−4497
    [57] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017. 6299−6308
    [58] QIU Z, YAO T, MEI T. Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 5533−5541
    [59] XIANG X, TIAN Y, REITER A, et al. S3D: Stacking segmental P3D for action quality assessment. In: Proceedings of the IEEE International Conference on Image Processing. Athens, Greece: IEEE, 2018: 928−932
    [60] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions. In: Proceedings of the International Conference on Learning Representations. San Juan, Puerto Rico: 2016. 928−932
    [61] BROMLEY J, BENTZ J W, BOTTOU L, GUYON I. Signature verification using a “siamese” time delay neural network. International Journal of Pattern Recognition and Articial Intelligence, 1993, 7(04): 669−688 doi: 10.1142/S0218001493000339
    [62] JAIN H, HARIT G, SHARMA A. Action quality assessment using siamese network-based deep metric learning. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(6): 2260−2273
    [63] YU X, RAO Y, ZHAO W, LU J, ZHOU J. Group-aware contrastive regression for action quality assessment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021. 7919−7928
    [64] LI M, ZHANG H B, LEI Q, FAN Z, LIU J, DU J. Pairwise contrastive learning network for action quality assessment. In: Proceedings of the European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 457−473
    [65] DONG L J, ZHANG H B, SHI Q, LEI Q, DU J, GAO S. Learning and fusing multiple hidden substages for action quality assessment. Knowledge-Based Systems, 2021, 229: 107388
    [66] LEA C, FLYNN M D, VIDAL R, REITER A, HAGER G. Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: IEEE, 2017. 156−165
    [67] LIU L, ZHAI P, ZHENG D, FANG Y. Multi-stage action quality assessment method. In: Proceedings of the International Conference on Control, Robotics and Intelligent System. Guangzhou, China: ACM, 2023. 116−122
    [68] GEDAMU K, 且Y, YANG Y, SHAO J, SHEN H. Fine-grained spatio-temporal parsing network for action quality assessment. IEEE Transactions on Image Processing, 2023, 32: 6386−6400 doi: 10.1109/TIP.2023.3331212

    GEDAMU K, 且Y, YANG Y, SHAO J, SHEN H. Fine-grained spatio-temporal parsing network for action quality assessment. IEEE Transactions on Image Processing, 2023, 32: 6386−6400 doi: 10.1109/TIP.2023.3331212
    [69] LEI Q, ZHANG H, DU J. Temporal attention learning for action quality assessment in sports video. Signal, Image and Video Processing, 2021, 15: 1575−1583 doi: 10.1007/s11760-021-01890-w
    [70] BAI Y, ZHOU D, ZHANG S, WANG J, DING E, GUAN Y, et al. Action quality assessment with temporal parsing transformer. In: Proceedings of the European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 422−438
    [71] XU A, ZENG LA, ZHENG W S. Likert scoring with grade decoupling for long-term action assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA: IEEE, 2022. 3232−3241
    [72] DU Z, HE D, WANG X, WANG Q. Learning semantics-guided representations for scoring figure skating. IEEE Transactions on Multimedia, 2023, 26: 4987−4997
    [73] YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, LA, USA: AAAI, 2018. 7444−7452
    [74] GAO X, HU W, TANG J, LIU J. Optimized skeleton-based action recognition via sparsified graph regression. In: Proceedings of the ACM International Conference on Multimedia. Nice, France: ACM, 2019. 601−610
    [75] PATRONA F, CHATZITOFIS A, ZARPALAS D, DARAS P. Motion analysis: Action detection, recognition and evaluation based on motion capture data. Pattern Recognition, 2018, 76: 612−622 doi: 10.1016/j.patcog.2017.12.007
    [76] Microsoft Development Team. Azure Kinect DK depth camera. Microsoft Azure Documentation [Online], available: https://docs.microsoft.com/en-us/azure/kinect-dk/, 2019.
    [77] YANG Y, RAMANAN D. Articulated pose estimation with flexible mixtures-of-parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011. 1385−1392
    [78] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, RAMANAN D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(9): 1627−1645
    [79] TIAN Y, SUKTHANKAR R, SHAH M. Spatiotemporal deformable part models for action detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013. 2642−2649
    [80] CAO Z, SIMON T, WEI S E, SHEIKH Y. Realtime multi-person 2D pose estinlation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017. 7291−7299
    [81] FANG H S, XIE S, TAI Y W, LU C. Rmpe: Regional multi-person pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 2334−2343
    [82] HE K, GKIOXARI G, DOLLÁR P, GIRSHICK R. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 2961−2969
    [83] SHOTTON J, FITZGIBBON A, COOK M, SHARP T, FINOCCHIO M, MOORE R, et al. Real-time human pose recognition in parts from single depth images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011. 1297−1304
    [84] GUIDE OpenNI User. Openni organization, november 2010. Last viewed, 2011, 18: 15
    [85] RHODIN H, SPORRI J, KATIRCIOGLU I, CONSTANTIN V, MEYER F, Müller E, SALZMANN M, et al. Learning monocular 3D human pose estimation from multi-view images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018. 8437−8446
    [86] DONG J, JIANG W, HUANG Q, BAO H, ZHOU X. Fast and robust multi-person 3D pose estimation from multiple views. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019. 7792−7801
    [87] ELIKTUTAN 0, AKGUL CB, WOLF C, SANKUR B. Graph-based analysis of physical exercise actions. In: Proceedings of the International Workshop on Multimedia Indexing and Information Retrieval for Healthcare. Barcelona, Spain: ACM, 2013. 23−32
    [88] LIU J, WANG G, HU P, DUAN L, KOT A. Global context-aware attention lstm networks for 3D action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017. 1647−1656
    [89] LEE I, KIM D, KANG S, LEE S. Ensemble deep learning for skeleton-based action recognition using temporal sliding lstm networks. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 1012−1020
    [90] LI C, ZHONG Q, XIE D, PU S. Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation. In: Proceedings of the International Joint Conference on Artificial Intelligence. Stockholm, Sweden: Morgan Kaufmann, 2018. 786−792
    [91] LI Y, XIA R, LIU X, HUANG Q. Learning shape-motion representations from geometric algebra spatio-temporal model for skeleton-based action recognition. In: Proceedings of the IEEE International Conference on Multimedia and Expo. Shanghai, China: IEEE, 2019. 1066−1071
    [92] LI M, CHEN S, CHEN X, ZHANG Y, WANG Y, TIAN Q. Actional-structural graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019. 3595−3603
    [93] SHI L, ZHANG Y, CHENG J, LU H. Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019. 12026−12035
    [94] BRUCE X, LIU Y, CHAN K C. Skeleton-based detection of abnormalities in human actions using graph convolutional networks. In: Proceedings of the International Conference on Transdisciplinary AI (TransAI). Irvine, California, USA: IEEE, 2020. 131−137
    [95] CHOWDHURY S H, AL AMIN M, RAHMAN A M, AMIN M A, ALI A A. Assessment of rehabilitation exercises from depth sensor data. In: Proceedings of the International Conference on Computer and Information Technology. Dhaka, Bangladesh: IEEE, 2021. 1−7
    [96] DEB S, ISLAM M F, RAHMAN S, RAHMAN S. Graph convolutional networks for assessment of physical rehabilitation exercises. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 410−419
    [97] LI H, LEI Q, ZHANG H, DU J, GAO S. Skeleton-based deep pose feature learning for action quality assessment on figure skating videos. Journal of Visual Communication and Image Representation, 2022, 89: 103625 doi: 10.1016/j.jvcir.2022.103625
    [98] PAN J H, GAO J, ZHENG W S. Adaptive action assessment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 8779−8795
    [99] NEKOUI M, CRUZ F O T, CHENG L. Eagle-eye: Extreme-pose action grader using detail bird's-eye view. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI, USA: IEEE, 2021. 394−402
    [100] FAWAZ H I, FORESTIER G, WEBER J, IDOUMGHAR L, MULLER P A. Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks. International Journal of Computer Assisted Radiology and Surgery, 2019, 14(9): 1611−1617 doi: 10.1007/s11548-019-02039-4
    [101] RODITAKIS K, MAKRIS A, ARGYROS A. Towards improved and interpretable action quality assessment with self-supervised alignment. In: Proceedings of the PErvasive Technologies Related to Assistive Environments Conference. Corfu, Greece: IEEE, 2021. 507−513
    [102] LI M Z, ZHANG H B, DONG L J, LEI Q, DU J X. Gaussian guided frame sequence encoder network for action quality assessment. Complex & Intelligent Systems, 2023, 9(2): 1963−1974
    [103] WANG Z, FEY A M. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. International Journal of Computer Assisted Radiology and Surgery, 2018, 13(12): 1959−1970 doi: 10.1007/s11548-018-1860-1
    [104] FUNKE I, MEES S T, WEITZ J, SPEIDEL S. Video-based surgical skill assessment using 3D convolutional neural networks. International Journal of Computer Assisted Radiology and Surgery, 2019, 14(7): 1217−1225 doi: 10.1007/s11548-019-01995-1
    [105] WANG Z, FEY AM. Satr-dl: improving surgical skill assessment and task recognition in robot-assisted surgery with deep neural networks. In: Proceedings of the IEEE Engineering in Medicine and Biology Society. Honolulu, Hawaii, USA: IEEE, 2018. 1793−1796
    [106] FAWAZ H I, FORESTIER G, WEBER J, IDOUMGHAR L, MULLER P A. Evaluating surgical skills from kinematic data using convolutional neural networks. In: Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Granada, Spain: Springer, 2018. 214−221
    [107] LIU D, LIQ, JIANG T, WANG Y, MIAO R, SHAN F, et al. Towards unified surgical skill assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021. 9522−9531
    [108] LI Z, GU L, WANG W, NAKAMURA R, SATO Y. Surgical skill assessment via video semantic aggregation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Singapore: Springer, 2022. 410−420
    [109] GAO J, PAN J H, ZHANG S J, ZHENG W S. Automatic modelling for interactive action assessment. International Journal of Computer Vision, 2023, 131(3): 659−679 doi: 10.1007/s11263-022-01695-5
    [110] ANASTASIOU D, JIN Y, STOYANOV D, MAZOMENOS E. Keep your eye on the best: Contrastive regression transformer for skill assessment in robotic surgery. IEEE Robotics and Automation Letters, 2023, 8(3): 1755−1762
    [111] FARD M J, AMERI S, DARIN ELLIS R, CHINNAM R B, PANDYA A K, KLEIN M D. Automated robot-assisted surgical skill evaluation: Predictive analytics approach. International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14(1): e1850 doi: 10.1002/rcs.1850
    [112] ZIA A, ESSA I. Automated surgical skill assessment in rmis training. International Journal of Computer Assisted Radiology and Surgery, 2018, 13(5): 731−739 doi: 10.1007/s11548-018-1735-5
    [113] FORESTIER G, PETITJEAN F, SENIN P, DESPINOY F, HUAULMÉ A, FAWAZ H I, et al. Surgical motion analysis using discriminative interpretable patterns. Artificial Intelligence in Medicine, 2018, 91: 3−11 doi: 10.1016/j.artmed.2018.08.002
    [114] WANG T, WANG Y, LI M. Towards accurate and interpretable surgical skill assessment: A video-based method incorporating recognized surgical gestures and skill levels. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention. Linla, Peru: Springer, 2020. 668−678
    [115] Okamoto L, Parmar P. Hierarchical NeuroSymbolic Approach for Comprehensive and Explainable Action Quality Assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle WA, USA: IEEE, 2024. 3204−3213
  • 加载中
计量
  • 文章访问数:  172
  • HTML全文浏览量:  108
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-11-19

目录

    /

    返回文章
    返回