2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阅读技巧识别和双通道融合机制的机器阅读理解方法

彭伟 胡玥 李运鹏 谢玉强 牛晨旭

彭伟, 胡玥, 李运鹏, 谢玉强, 牛晨旭. 基于阅读技巧识别和双通道融合机制的机器阅读理解方法. 自动化学报, 2024, 50(5): 1−12 doi: 10.16383/j.aas.c220983
引用本文: 彭伟, 胡玥, 李运鹏, 谢玉强, 牛晨旭. 基于阅读技巧识别和双通道融合机制的机器阅读理解方法. 自动化学报, 2024, 50(5): 1−12 doi: 10.16383/j.aas.c220983
Peng Wei, Hu Yue, Li Yun-Peng, Xie Yu-Qiang, Niu Chen-Xu. A machine reading comprehension approach based on reading skill recognition and dual channel fusion mechanism. Acta Automatica Sinica, 2024, 50(5): 1−12 doi: 10.16383/j.aas.c220983
Citation: Peng Wei, Hu Yue, Li Yun-Peng, Xie Yu-Qiang, Niu Chen-Xu. A machine reading comprehension approach based on reading skill recognition and dual channel fusion mechanism. Acta Automatica Sinica, 2024, 50(5): 1−12 doi: 10.16383/j.aas.c220983

基于阅读技巧识别和双通道融合机制的机器阅读理解方法

doi: 10.16383/j.aas.c220983
基金项目: 国家自然科学基金(62006222, U21B2009), 中国科学院战略性先导研究计划(XDC02030400)资助
详细信息
    作者简介:

    彭伟:中关村实验室助理研究员. 2023年获得中国科学院信息工程研究所博士学位. 主要研究方向为对话生成, 网络空间安全. E-mail: pengwei@iie.ac.cn

    胡玥:中国科学院信息工程研究所研究员. 主要研究方向为自然语言处理, 人工智能. 本文通信作者. E-mail: huyue@iie.ac.cn

    李运鹏:中国科学院信息工程研究所博士研究生. 2019年获得山东大学学士学位. 主要研究方向为自然语言处理. E-mail: liyunpeng@iie.ac.cn

    谢玉强:中国科学院信息工程研究所博士研究生. 2023年获得中国科学院大学博士学位. 主要研究方向为自然语言处理, 认知建模. E-mail: yuqiang.xie@kunlun-inc.com

    牛晨旭:中国科学院信息工程研究所博士研究生. 2021年获得西安电子科技大学学士学位. 主要研究方向为自然语言处理. E-mail: niuchenxu@iie.ac.cn

A Machine Reading Comprehension Approach Based on Reading Skill Recognition and Dual Channel Fusion Mechanism

Funds: Supported by National Natural Science Foundation of China (62006222, U21B2009) and Strategic Priority Research Program of Chinese Academy of Science (XDC02030400)
More Information
    Author Bio:

    PENG Wei Assistant professor at Zhongguancun Laboratory. He received his Ph.D. degree from University of Chinese Academy of Science in 2023. His research interest covers dialog generation and cyber security

    HU Yue Professor at the Institute of Information Engineering, Chinese Academy of Sciences. Her research interest covers natural language processing and artificial intelligence. Corresponding author of this paper

    LI Yun-Peng Ph.D. candidate at the Institute of Information Engineering, Chinese Academy of Sciences. He received his bachelor degree from Shandong University in 2019. His main research interest is natural language processing

    XIE Yu-Qiang Ph.D. candidate at the Institute of Information Engineering, Chinese Academy of Sciences. He received his Ph.D. degree from University of Chinese Academy of Science in 2023. His research interest covers natural language processing and cognitive modeling

    NIU Chen-Xu Ph.D. candidate at the Institute of Information Engineering, Chinese Academy of Sciences. She received her bachelor degree from Xidian University in 2021. Her main research interest is natural language processing

  • 摘要: 机器阅读理解任务旨在要求系统对给定文章进行理解, 然后对给定问题进行回答. 先前的工作重点聚焦在问题和文章间的交互信息, 忽略了对问题进行更加细粒度的分析(如问题所考察的阅读技巧是什么?). 受到先前研究的启发, 人类对于问题的理解是一个多维度的过程, 首先人类需要理解问题的上/下文语义信息, 然后针对不同类型问题, 识别其需要使用的阅读技巧, 最后通过与文章交互回答出问题答案. 针对这些问题, 提出一种基于阅读技巧识别和双通道融合的机器阅读理解方法, 对问题进行更加细致的分析, 从而提高模型回答问题的准确性. 阅读技巧识别器通过对比学习的方法, 能够显式地捕获阅读技巧的语义信息. 双通道融合机制将问题与文章的交互信息和阅读技巧的语义信息进行深层次的融合, 从而达到辅助系统理解问题和文章的目的. 为了验证该模型的效果, 在FairytaleQA数据集上进行实验, 实验结果表明, 该方法实现了在机器阅读理解任务和阅读技巧识别任务上的最好效果.
  • 图  1  在FairytaleQA数据集中的一个例子

    Fig.  1  An example in FairytaleQA dataset

    图  2  本文模型总体结构

    Fig.  2  Overall structure of our model

    图  3  阅读技巧识别器结构

    Fig.  3  The structure of the reading skill recognizer

    图  4  双通道融合机制结构图

    Fig.  4  Structure of dual channel fuspion layer

    图  5  双通道融合机制的性能比较

    Fig.  5  The performances comparison on the dual channel fusion mechanism

    图  6  3种不同融合机制的比较

    Fig.  6  The comparison on the three different fusion mechanisms

    图  7  阅读技巧识别的可视化

    Fig.  7  The visualization of the skill recognition

    表  1  FairytaleQA数据集的主要统计数据

    Table  1  Core statistics of the FairytaleQA dataset

    项目均值标准偏差最小值最大值
    每个故事章节数15.69.8260
    每个故事单词数2305.41480.82287577
    每个章节单词数147.760.012447
    每个故事问题数41.729.15161
    每个章节问题数2.92.4018
    每个问题单词数10.53.2327
    每个答案单词数7.25.8170
    下载: 导出CSV

    表  2  FairytaleQA数据集中验证集和测试集上的性能对比 (%)

    Table  2  Performance comparison on the validation and the test set in FairytaleQA dataset (%)

    模型名称验证集测试集
    B-1B-2B-3B-4ROUGE-LMETEORB-1B-2B-3B-4ROUGE-LMETEOR
    轻量化模型
    Seq2Seq25.126.672.010.8113.616.9426.336.722.170.8114.557.34
    CAQA-LSTM28.058.243.661.5716.158.1130.048.854.171.9817.338.60
    Transformer21.874.941.530.5910.326.0121.725.211.740.6710.276.22
    预训练语言模型
    DistilBERT9.708.20
    BERT10.409.70
    BART19.137.923.422.1412.256.5121.058.933.902.5212.666.70
    微调模型
    BART-Question-types49.10
    CAQA-BART52.5944.1742.7640.0753.2028.3155.7347.0043.6840.4555.1328.80
    BART-NarrativeQA45.3439.1736.3334.1047.3924.6548.1341.5038.2636.9749.1626.93
    BART-FairytaleQA$ \dagger $51.7443.3041.2338.2953.8827.0954.0445.9842.0839.4653.6427.45
    BART-FairytaleQA ‡51.2843.9641.5139.0554.1126.8654.8246.3743.0239.7154.4427.82
    本文模型54.2147.3844.6543.0258.9929.7057.3649.5546.2342.9158.4830.93
    人类表现65.1064.40
    下载: 导出CSV

    表  3  FairytaleQA数据集中验证集和测试集上的各组件消融实验结果 (%)

    Table  3  The performance of ablation study on each component in our model on the validation set and the test set of the FairytaleQA dataset (%)

    模型设置验证集测试集
    B-1B-2B-3B-4ROUGE-LMETEORB-1B-2B-3B-4ROUGE-LMETEOR
    SOTA 模型51.2843.9641.5139.0554.1126.8654.8246.3743.0239.7154.4427.82
    去除阅读技巧识别器52.1544.4742.1140.7355.3827.4554.9047.1643.5540.6756.4829.31
    去除对比学习损失53.2045.0742.8841.9456.7528.1555.2247.9844.1341.4257.3430.20
    去除双通道融合机制52.5845.3843.1541.6257.2227.7555.7948.2044.9641.2857.1229.88
    本文模型54.2147.3844.6543.0258.9929.7057.3649.5546.2342.9158.4830.93
    下载: 导出CSV

    表  4  基于交叉熵的方法和基于有监督对比学习的方法在2个任务上的效果 (%)

    Table  4  The performance of cross-entropy-based method and supervised contrastive learning method on the two tasks (%)

    实验设置准确率B-4ROUGE-LMETEOR
    基于交叉熵的方法91.4041.4257.3430.20
    本文基于有监督
    对比学习的方法
    93.7742.9158.4830.93
    下载: 导出CSV

    表  5  不同输入下的阅读技巧识别器的识别准确率 (%)

    Table  5  The recognition accuracy of reading skill recognizer under different inputs (%)

    实验设置验证集测试集
    只输入问题85.3182.56
    输入问题和文章92.2493.77
    下载: 导出CSV
  • [1] Hermann K M, Kociský T, Grefenstette E, Espeholt L, Kay W, Suleyman M, et al. Teaching machines to read and comprehend. In: Proceedings of the Neural Information Processing Systems. Montreal, Canada: 2015. 1693–1701
    [2] Seo M J, Kembhavi A, Farhadi A, Hajishirzi H. Bidirectional attention flow for machine comprehension. arXiv preprint arXiv: 1611.01603, 2016.
    [3] Tay Y, Wang S, Luu A T, Fu J, Phan M C, Yuan X, et al. Simple and effective curriculum pointer-generator networks for reading comprehension over long narratives. In: Proceedings of the Conference of the Association for Computational Linguistics. Florence, Italy: 2019. 4922–4931
    [4] Peng W, Hu Y, Yu J, Xing L X, Xie Y Q. APER: Adaptive evidence-driven reasoning network for machine reading comprehension with unanswerable questions. Knowledge-Based Systems, 2021, 229: Article No. 107364 doi: 10.1016/j.knosys.2021.107364
    [5] Perevalov A, Both A, Diefenbach D, Ngomo A N. Can machine translation be a reasonable alternative for multilingual question answering systems over knowledge graphs? In: Proceedings of the ACM Web Conference. Lyon, France: 2022. 977–986
    [6] Xu Y, Wang D, Yu M, Ritchie D, Yao B, Wu T, et al. Fantastic questions and where to find them: FairytaleQA——An authentic dataset for narrative comprehension. In: Proceedings of the Conference of the Association for Computational Linguistics. Dublin, Ireland: 2022. 447–460
    [7] Liu S, Zhang X, Zhang S, Wang H, Zhang W. Neural machine reading comprehension: Methods and trends. arXiv preprint arXiv: 1907.01118, 2019.
    [8] Yan M, Xia J, Wu C, Bi B, Zhao Z, Zhang J, et al. A deep cascade model for multi-document reading comprehension. In: Proceedings of the Conference on Artificial Intelligence. Honolulu, USA: 2019. 7354–7361
    [9] Liao J, Zhao X, Li X, Tang J, Ge B. Contrastive heterogeneous graphs learning for multi-hop machine reading comprehension. World Wide Web, 2022, 25(3): 1469−1487 doi: 10.1007/s11280-021-00980-6
    [10] Lehnert W G. Human and computational question answering. Cognitive Science, 1977, 1(1): 47−73 doi: 10.1207/s15516709cog0101_3
    [11] Kim Y. Why the simple view of reading is not simplistic: Unpacking component skills of reading using a direct and indirect effect model of reading. Scientific Studies of Reading, 2017, 21(4): 310−333 doi: 10.1080/10888438.2017.1291643
    [12] Sugawara S, Yokono H, Aizawa A. Prerequisite skills for reading comprehension: Multi-perspective analysis of Mctest datasets and systems. In: Proceedings of the Conference on Artificial Intelligence. San Francisco, USA: 2017. 3089–3096
    [13] Weston J, Bordes A, Chopra S, Mikolov T. Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv: 1502.05698, 2015.
    [14] Purves A C, Söter A, Takala S, Vähäpassi A. Towards a domain-referenced system for classifying composition assignments. Research in the Teaching of English, 1984: 385−416
    [15] Vähäpassi A. On the specification of the domain of school writing. Afinlan Vuosikirja, 1981: 85−107
    [16] Chen D, Bolton J, Manning C D. A thorough examination of the CNN/daily mail reading comprehension task. arXiv preprint arXiv: 1606.02858, 2016.
    [17] Rajpurkar P, Zhang J, Lopyrev K, Liang P. Squad: 100,000 + questions for machine comprehension of text. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Austin, USA: 2016. 2383–2392
    [18] Richardson M, Renshaw E. Mctest: A challenge dataset for the open-domain machine comprehension of text. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Washington, USA: 2013. 193–203
    [19] Kocisk'y T, Schwarz J, Blunsom P, Dyer C, Hermann K M, Melis G. The narrativeqa reading comprehension challenge. Transactions of the Association for Computational Linguistics, 2018, 6: 317−328 doi: 10.1162/tacl_a_00023
    [20] Yang B, Mitchell T M. Leveraging knowledge bases in LSTMs for improving machine reading. In: Proceedings of the Conference of the Association for Computational Linguistics. Vancouver, Canada: 2017. 1436–1446
    [21] Zhang Z, Wu Y, Zhou J, Duan S, Zhao H, Wang R. SG-Net: Syntax-guided machine reading comprehension. In: Proceedings of the Conference on Artificial Intelligence, New York, USA: 2020. 9636–9643
    [22] Kao K Y, Chang C H. Applying information extraction to storybook question and answer generation. In: Proceedings of the Conference on Computational Linguistics and Speech Process-ing. Taipei, China: 2022. 289–298
    [23] Lu J, Sun X, Li B, Bo L, Zhang T. BEAT: Considering question types for bug question answering via templates. Knowledge-Based Systems, 2021, 225: Article No. 107098
    [24] Yang C, Jiang M, Jiang B, Zhou W, Li K. Co-attention network with question type for visual question answering. IEEE Access, 2019, (7): 40771−40781 doi: 10.1109/ACCESS.2019.2908035
    [25] Wu Z, Xiong Y, Yu S X, Lin D. Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Computer Society, 2018. 3733– 3742
    [26] Chen X, He K. Exploring simple siamese representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Virtual Event: IEEE, 2021. 15750– 15758
    [27] Yang J, Duan J, Tran S, Xu Y, Chanda S, Li Q C, et al. Vision-language pre-training with triple contrastive learning. arXiv preprint arXiv: 2202.10401, 2022.
    [28] Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE Computer Society, 2005. 539–546
    [29] Weinberger K Q, Saul L K. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Lear-ning Research, 2009, 10(2): 207−244 doi: 10.5555/1577069.1577078
    [30] Gao T, Yao X, Chen D. SimCSE: Simple contrastive learning of sentence embeddings. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Virtual Event. 2021. 6894–6910
    [31] Giorgi J M, Nitski O, Wang B, Bader G D. DeCLUTR: Deep contrastive learning for unsupervised textual representations. In: Proceedings of the Conference of the Association for Computational Linguistics. Virtual Event. 2021. 879–895
    [32] Khosla P, Teterwak P, Wang C, Sarna A, Tian Y, Krishnan D, et al. Supervised contrastive learning. In: Proceedings of the Neural Information Processing Systems. Virtual Event. 2020. 18661–18673
    [33] Li S, Hu X, Lin L, Wen L. Pair-level supervised contrastive learning for natural language inference. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Virtual Event. IEEE, 2022. 8237–8241
    [34] Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of North American Chapter of the Association for Computational Linguistics. Minneapolis, USA: 2019. 4171– 4186
    [35] Papineni K, Roukos S, Ward T, Zhu W. BLEU: A method for automatic evaluation of machine translation. In: Proceedings of the Conference of the Association for Computational Linguistics. Philadelphia, USA: 2002. 311–318
    [36] Lin C Y. ROUGE: A package for automatic evaluation of summaries. Text Summarization Branches Out, 2004: 74−81
    [37] Banerjee S, Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the Conference of the Association for Computational Linguistics. Ann Arbor, USA: 2005. 65–72
    [38] Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, et al. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the Association for Computational Linguistics. Virtual Event. 2020. 7871–7880
    [39] Loshchilov I, Hutter F. Fixing weight decay regularization in adam. arXiv preprint arXiv: 1711.05101. 2017.
    [40] Cho K, Merrienboer B, Bengio Y, Gulcehre C, Bahdanau D, Bougares F, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the Empirical Methods in Natural Language Processing. Doha, Qatar: 2014. 1724–1734
    [41] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, et al. Attention is all you need. In: Proceedings of the Neural Information Processing Systems. Long Beach, USA: 2017. 5998–6008
    [42] Sanh V, Debut L, Chaumond J, Distilbert T W. A distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv preprint arXiv: 1910.01108, 2019.
    [43] Mou X, Yang C, Yu M, Yao B, Guo X, Potdar S. Narrative question answering with cutting-edge open-domain QA techni-ques: A comprehensive study. Transactions of the Association for Computational Linguistics, 2021, 9: 1032−1046 doi: 10.1162/tacl_a_00411
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回