2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非匹配不确定MIMO系统的分数阶终端滑模控制

周铭浩 魏可蒙 冯勇 穆朝絮 苏鸿宇

周铭浩, 魏可蒙, 冯勇, 穆朝絮, 苏鸿宇. 非匹配不确定MIMO系统的分数阶终端滑模控制. 自动化学报, 2023, 49(10): 2224−2236 doi: 10.16383/j.aas.c220875
引用本文: 周铭浩, 魏可蒙, 冯勇, 穆朝絮, 苏鸿宇. 非匹配不确定MIMO系统的分数阶终端滑模控制. 自动化学报, 2023, 49(10): 2224−2236 doi: 10.16383/j.aas.c220875
Zhou Ming-Hao, Wei Ke-Meng, Feng Yong, Mu Chao-Xu, Su Hong-Yu. Fractional-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. Acta Automatica Sinica, 2023, 49(10): 2224−2236 doi: 10.16383/j.aas.c220875
Citation: Zhou Ming-Hao, Wei Ke-Meng, Feng Yong, Mu Chao-Xu, Su Hong-Yu. Fractional-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. Acta Automatica Sinica, 2023, 49(10): 2224−2236 doi: 10.16383/j.aas.c220875

非匹配不确定MIMO系统的分数阶终端滑模控制

doi: 10.16383/j.aas.c220875
基金项目: 国家自然科学基金(U21A20145, 62073095)资助
详细信息
    作者简介:

    周铭浩:哈尔滨理工大学电气与电子工程学院副教授. 分别于2010年, 2012年和2019年获得哈尔滨工业大学电气工程专业学士, 硕士和博士学位. 主要研究方向为新能源汽车电机驱动, SiC控制器, 智能电网控制, 滑模控制和人工智能. E-mail: zhouminghao@hrbust.edu.cn

    魏可蒙:哈尔滨理工大学电气与电子工程学院硕士研究生. 主要研究方向为滑模控制理论, 运动控制和永磁电机轴电流抑制. E-mail: 2120310227@stu.hrbust.edu.cn

    冯勇:哈尔滨工业大学电气工程及自动化学院教授. 主要研究方向为滑模与非线性控制, 运动控制系统和计算机控制. 本文通信作者. E-mail: yfeng@hit.edu.cn

    穆朝絮:天津大学电气自动化与信息工程学院教授. 主要研究方向为强化学习, 自适应学习系统, 非线性控制和优化. E-mail: cxmu@tju.edu.cn

    苏鸿宇:哈尔滨理工大学电气与电子工程学院硕士研究生. 主要研究方向为滑模控制, 运动控制和独立电源系统. E-mail: 2020310264@stu.hrbust.edu.cn

Fractional-order Terminal Sliding-mode Control of MIMO Systems With Unmatched Uncertainties

Funds: Supported by National Natural Science Foundation of China (U21A20145, 62073095)
More Information
    Author Bio:

    ZHOU Ming-Hao Associate professor at the School of Electrical and Electronic Engineering, Harbin University of Science and Technology. He received his bachelor, master and Ph.D. degrees in electrical engineering from the Harbin Institute of Technology in 2010, 2012, and 2019, respectively. His research interest covers new energy vehicle motor drive, SiC-controller, smart grid control, sliding mode control and artificial intelligence

    WEI Ke-Meng Master student at the School of Electrical and Electronic Engineering, Harbin University of Science and Technology. Her research interest covers sliding mode control systems, motion control and shaft current suppression of PMSM

    FENG Yong Professor at the School of Electrical Engineering and Automation, Harbin Institute of Technology. His research interest covers sliding mode and nonlinear control, motion control system and computer control. Corresponding author of this paper

    MU Chao-Xu Professor at the School of Electrical and Information Engineering, Tianjin University. Her research interest covers reinforcement learning, adaptive and learning systems, nonlinear control and optimization

    SU Hong-Yu Master student at the School of Electrical and Electronic Engineering, Harbin University of Science and Technology. His research interest covers sliding mode control, motion control and stand-alone power systems

  • 摘要: 针对一类非匹配不确定多输入多输出(Multi-input multi-output, MIMO)系统提出一种分数阶终端滑模控制(Fractional-order terminal sliding-mode, FOTSM)策略, 使系统输出收敛到零而非其邻域. 该方法解除传统反步法控制律设计中, 虚拟控制增益右伪逆矩阵必须存在的严苛限制; 对系统不确定性的假设不局限于慢时变和H2范数有界型扰动, 分析控制增益存在摄动情况下系统的控制问题. 分数阶终端滑模面及其控制律的设计使得虚拟和实际控制信号连续, 削弱抖振现象, 利用自适应滑模切换增益技术解决由控制增益矩阵摄动引起的代数环问题. 最后, 仿真分析验证所提方法的正确性和优越性.
  • 图  1  分数阶与整数阶滑模收敛特性比较

    Fig.  1  Comparison of fractional- and integral-order sliding-mode

    图  2  分数阶滑模控制算法框图

    Fig.  2  Block diagram of the fractional-order sliding-mode control method

    图  3  五种不同控制方法的系统输出相量${{\boldsymbol{x}}}_1$

    Fig.  3  System output ${{\boldsymbol{x}}}_1$ under the five control methods

    图  4  五种不同控制方法的系统输出相量${x}_{11}$

    Fig.  4  System output ${x}_{11}$ under the five control methods

    图  5  五种不同控制方法的系统输出相量${x}_{12}$

    Fig.  5  System output ${x}_{12}$ under the five control methods

    图  6  五种不同控制方法的系统输出相量${x}_{13}$

    Fig.  6  System output ${x}_{13}$ under the five control methods

    图  7  五种不同控制方法的系统输出的2范数$\left\| {{\boldsymbol{x}}}_1\right\|$

    Fig.  7  2-norm of system output $\left\| {{\boldsymbol{x}}}_1\right\|$ under five methods

    图  8  分数阶终端滑模控制下状态${\boldsymbol{x}}_{2}$和虚拟控制信号${\boldsymbol{x}}_{2ref}$

    Fig.  8  States ${\boldsymbol{x}}_{2}$ and virtual control ${\boldsymbol{x}}_{2ref}$ under FOTSM

    图  9  五种不同控制方法的实际控制信号${\boldsymbol{u}}$

    Fig.  9  Actual control ${\boldsymbol{u}}$ under the five control methods

    表  1  控制器主要设计参数

    Table  1  The design parameters of the controllers

    控制方法 控制器参数
    DOBSM $c_1=c_2=10, k_1=k_2=700$, $l_1=l_2=10$
    SOSM $c=60, k=2\;000$
    FSM ${\boldsymbol{C} }_{1}={\rm{diag}}\{60,60\}$, ${\boldsymbol{C} }_{2}={\rm{diag}}\{150,170\}$, $p=5, q=3$
    FSM-Sat ${\boldsymbol{C} }_{1}={\rm{diag}}\{60,60\}$, ${\boldsymbol{C} }_{2}={\rm{diag}}\{150,170\}$, $\delta=1/8$, $p=5,q=3$
    下载: 导出CSV

    表  2  不同控制方法性能对比

    Table  2  Performance comparison of the five methods

    控制方法 收敛速度 控制精度 控制信号
    DOBSM 较快 $\leq0.05$ 不连续, 抖振
    SOSM 较快 $\leq0.04$ 不连续, 抖振
    FSM $\leq 1\times10^{-3}$ 不连续, 抖振
    FSM-Sat $\leq0.06$ 连续
    FOTSM $\leq4\times10^{-3}$ 连续
    下载: 导出CSV
  • [1] Yu X H, Feng Y, Man Z H. Terminal sliding mode control-an overview. IEEE Open Journal of the Industrial Electronics Society, 2021, 2: 36-52 doi: 10.1109/OJIES.2020.3040412
    [2] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 2002, 38(12): 2159-2167 doi: 10.1016/S0005-1098(02)00147-4
    [3] Feng Y, Zhou M H, Han Q L, Han F L, Cao Z W, Ding S L. Integral-type sliding-mode control for a class of mechatronic systems with gain adaptation. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5357-5368 doi: 10.1109/TII.2019.2954550
    [4] Mu C X, He H B. Dynamic behavior of terminal sliding mode control. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3480-3490 doi: 10.1109/TIE.2017.2764842
    [5] 游星星, 杨道文, 郭斌, 刘凯, 佃松宜, 朱雨琪. 基于观测器和指定性能的非线性系统事件触发跟踪控制. 自动化学报, DOI: 10.16383/j.aas.c210387

    You Xing-Xing, Yang Dao-Wen, Guo Bin, Liu Kai, Dian Song-Yi, Zhu Yu-Qi. Event-triggered tracking control for a class of nonlinear systems with observer and prescribed performance. Acta Automatica Sinica, DOI: 10.16383/j.aas.c210387
    [6] Hou H Z, Yu X H, Xu L, Rsetam K, Cao Z W. Finite-time continuous terminal sliding mode control of servo motor systems. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5647-5656 doi: 10.1109/TIE.2019.2931517
    [7] Yang J, Yu X H, Zhang L, Li S H. A Lyapunov-based approach for recursive continuous higher order nonsingular terminal sliding-mode control. IEEE Transactions on Automatic Control, 2021, 66(9): 4424-4431 doi: 10.1109/TAC.2020.3047145
    [8] Zhou M H, Cheng S W, Feng Y, Xu W, Wang L K, Cai W. Full-order terminal sliding-mode-based sensorless control of induction motor with gain adaptation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(2): 1978-1991 doi: 10.1109/JESTPE.2021.3081863
    [9] Du H B, Chen X P, Wen G H, Yu X H, Lü J H. Discrete-time fast terminal sliding mode control for permanent magnet linear motor. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9916-9927 doi: 10.1109/TIE.2018.2815942
    [10] 李繁飙, 黄培铭, 阳春华, 廖力清, 桂卫华. 基于非线性干扰观测器的飞机全电刹车系统滑模控制设计. 自动化学报, 2021, 47(11): 2557-2569 doi: 10.16383/j.aas.c201041

    Li Fan-Biao, Huang Pei-Ming, Yang Chun-Hua, Liao Li-Qing, Gui Wei-Hua. Sliding mode control design of aircraft electric brake system based on nonlinear disturbance observer. Acta Automatica Sinica, 2021, 47(11): 2557-2569 doi: 10.16383/j.aas.c201041
    [11] Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Transactions on Automatic Control, 1994, 39(12): 2464-2469 doi: 10.1109/9.362847
    [12] 史宏宇, 冯勇. 感应电机高阶终端滑模磁链观测器的研究. 自动化学报, 2012, 38(2): 288-294 doi: 10.3724/SP.J.1004.2012.00288

    Shi Hong-Yu, Feng Yong. High-order terminal sliding mode flux observer for induction motors. Acta Automatica Sinica, 2012, 38(2): 288-294 doi: 10.3724/SP.J.1004.2012.00288
    [13] Cao J H, Xie S Q, Das R. MIMO sliding mode controller for gait exoskeleton driven by pneumatic muscles. IEEE Transactions on Control Systems Technology, 2018, 26(1): 274-281 doi: 10.1109/TCST.2017.2654424
    [14] Rehman F U, Mufti M R, Din S U, Afzal H, Qureshi M I, Khan D M. Adaptive smooth super-twisting sliding mode control of nonlinear systems with unmatched uncertainty. IEEE Access, 2020, 8: 177932-177940 doi: 10.1109/ACCESS.2020.3027194
    [15] Castanos F, Fridman L. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Transactions on Automatic Control, 2006, 51(5): 853-858 doi: 10.1109/TAC.2006.875008
    [16] Li S H, Yang J, Chen W H, Chen X S. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4792-4802 doi: 10.1109/TIE.2011.2182011
    [17] Zhang X Y, Xiao L F, Li H F. Robust control for switched systems with unmatched uncertainties based on switched robust integral sliding mode. IEEE Access, 2020, 8: 138396-138405 doi: 10.1109/ACCESS.2020.3012462
    [18] Yang J, Li S H, Yu X H. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Transactions on Industrial Electronics, 2013, 60(1): 160-169 doi: 10.1109/TIE.2012.2183841
    [19] 侯利民, 王龙洋, 王怀震. 基于NDOB的匹配/非匹配不确定性系统滑模控制(英文). 自动化学报, 2017, 43(7): 1257-1264 doi: 10.16383/j.aas.2017.e160014

    Hou L M, Wang L Y, Wang H Z. SMC for systems with matched and mismatched uncertainties and disturbances based on NDOB. Acta Automatica Sinica, 2017, 43(7): 1257-1264 doi: 10.16383/j.aas.2017.e160014
    [20] 李强, 方一鸣, 李建雄, 马壮. 非匹配不确定性下连铸结晶器振动位移系统准滑模控制. 控制与决策, 2020, 35(7): 1615-1622

    Li Qiang, Fang Yi-Ming, Li Jian-Xiong, Ma Zhuang. Quasi-sliding mode control for mold vibration displacement system with unmatched uncertainties. Control and Decision, 2020, 35(7): 1615-1622
    [21] Ding S H, Li S H. Second-order sliding mode controller design subject to mismatched term. Automatica, 2017, 77: 388-392 doi: 10.1016/j.automatica.2016.07.038
    [22] Salihbegovic A. Robust internal-loop compensator based sliding mode control of nonlinear systems in the presence of mismatched disturbances. IEEE Access, 2019, 7: 50492-50502 doi: 10.1109/ACCESS.2019.2910725
    [23] Zhu W H. Comments on "Robust tracking control for rigid robotic manipulators". IEEE Transactions on Automatic Control, 2000, 45(8): 1577-1580 doi: 10.1109/9.871778
    [24] 王艳敏, 冯勇, 夏红伟, 申立群. 多输入不确定系统的平滑非奇异终端滑模控制. 控制与决策, 2015, 30(1): 161-165

    Wang Yan-Min, Feng Yong, Xia Hong-Wei, Shen Li-Qun. Smooth nonsingular terminal sliding mode control of uncertain multi-input systems. Control and Decision, 2015, 30(1): 161-165
    [25] Kao Y G, Ma S, Xia H W, Wang C H, Liu Y L. Integral sliding mode control for a kind of impulsive uncertain reaction-diffusion systems. IEEE Transactions on Automatic Control, 2023, 68(2): 1154-1160 doi: 10.1109/TAC.2022.3149865
    [26] 沈智鹏, 张晓玲. 基于非线性增益递归滑模的船舶轨迹跟踪动态面自适应控制. 自动化学报, 2018, 44(10): 1833-1841 doi: 10.16383/j.aas.2017.c170198

    Shen Zhi-Peng, Zhang Xiao-Ling. Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear gains. Acta Automatica Sinica, 2018, 44(10): 1833-1841 doi: 10.16383/j.aas.2017.c170198
    [27] Feng Y, Zhou M H, Zheng X M, Han F L, Yu X H. Full-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. Journal of the Franklin Institute, 2018, 355(2): 653-674 doi: 10.1016/j.jfranklin.2017.10.034
    [28] Ma Z Q, Liu Z X, Huang P F, Kuang Z A. Adaptive fractional-order sliding mode control for admittance-based telerobotic system with optimized order and force estimation. IEEE Transactions on Industrial Electronics, 2022, 69(5): 5165-5174 doi: 10.1109/TIE.2021.3078385
    [29] Long B, Lu P J, Chong K T, Rodriguez J, Guerrero J M. Robust fuzzy-fractional-order nonsingular terminal sliding-mode control of LCL-type grid-connected converters. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5854-5866 doi: 10.1109/TIE.2021.3094411
    [30] Lin D, Liao X Z, Dong L, Yang R C, Yu S S, Iu H H C, et al. Experimental study of fractional-order RC circuit model using the Caputo and Caputo-Fabrizio derivatives. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(3): 1034-1044 doi: 10.1109/TCSI.2020.3040556
    [31] 王智伟, 李鹏瀚, 刘鑫, 王文倬, 柯贤波, 李征. 基于分数阶滑模控制的双馈风电系统次同步振荡抑制方法. 中国电机工程学报, DOI: 10.13334/j.0258-8013.pcsee.221357

    Wang Zhi-Wei, Li Peng-Han, Liu Xin, Wang Wen-Zhuo, Ke Xian-Bo, Li Zheng. Suppression method of subsynchronous oscillation in DFIG-based wind power system based on fractional-order sliding mode control. Proceedings of the CSEE, DOI: 10.13334/j.0258-8013.pcsee.221357
    [32] 赵希梅, 王超, 金鸿雁. 基于NDO的永磁同步电动机自适应分数阶滑模控制. 中国机械工程, 2023, 34(9): 1093−1099

    Zhao Xi-Mei, Wang Chao, Jin Hong-Yan. Adaptive fractional order sliding mode control for permanent magnet synchronous motor based on NDO. Chinese Mechanical Engineering, 2023, 34(9): 1093−1099
    [33] Lin X P, Liu J X, Liu F G, Liu Z, Gao Y B, Sun G H. Fractional-order sliding mode approach of buck converters with mismatched disturbances. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(9): 3890-3900 doi: 10.1109/TCSI.2021.3092138
    [34] Zhang X F, Huang W K, Wang Q G. Robust H adaptive sliding mode fault tolerant control for T-S fuzzy fractional order systems with mismatched disturbances. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(3): 1297-1307 doi: 10.1109/TCSI.2020.3039850
    [35] Levant A, Shustin B. Quasi-continuous MIMO sliding-mode control. IEEE Transactions on Automatic Control, 2018, 63(9): 3068-3074 doi: 10.1109/TAC.2017.2778251
    [36] Utkin V, Lewis F L, Guldner J, Ge S S, Shi J X. Sliding Mode Control in Electro-Mechanical Systems. Boca Raton: CRC Press, 2009.
    [37] Yang J, Li S H, Su J Y, Yu X H. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica, 2013, 49(7): 2287-2291 doi: 10.1016/j.automatica.2013.03.026
    [38] Aghababa M P. Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. International Journal of Control, 2013, 86(10): 1744-1756 doi: 10.1080/00207179.2013.796068
    [39] Tang Y G, Zhang X Y, Zhang D L, Zhao G, Guan X P. Fractional order sliding mode controller design for antilock braking systems. Neurocomputing, 2013, 111: 122-130 doi: 10.1016/j.neucom.2012.12.019
    [40] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766 doi: 10.1137/S0363012997321358
    [41] Zak M. Terminal attractors for addressable memory in neural networks. Physics Letters A, 1988, 133(1-2): 18-22 doi: 10.1016/0375-9601(88)90728-1
    [42] Sun G H, Ma Z Q, Yu J Y. Discrete-time fractional order terminal sliding mode tracking control for linear motor. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3386-3394 doi: 10.1109/TIE.2017.2748045
    [43] Edwards C, Spurgeon S K. Sliding Mode Control: Theory and Applications. London: CRC Press, 1998.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  184
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 录用日期:  2023-02-10
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回