2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性系统自适应最优切换控制方法

毛艳岭 富月

毛艳岭, 富月. 非线性系统自适应最优切换控制方法. 自动化学报, 2023, 49(10): 2122−2135 doi: 10.16383/j.aas.c220180
引用本文: 毛艳岭, 富月. 非线性系统自适应最优切换控制方法. 自动化学报, 2023, 49(10): 2122−2135 doi: 10.16383/j.aas.c220180
Mao Yan-Ling, Fu Yue. Adaptive optimal switching control of nonlinear systems. Acta Automatica Sinica, 2023, 49(10): 2122−2135 doi: 10.16383/j.aas.c220180
Citation: Mao Yan-Ling, Fu Yue. Adaptive optimal switching control of nonlinear systems. Acta Automatica Sinica, 2023, 49(10): 2122−2135 doi: 10.16383/j.aas.c220180

非线性系统自适应最优切换控制方法

doi: 10.16383/j.aas.c220180
基金项目: 国家自然科学基金(62333004, 61991403, 61991400, 61873052)资助
详细信息
    作者简介:

    毛艳岭:东北大学流程工业综合自动化国家重点实验室硕士研究生. 2020年获得曲阜师范大学学士学位. 主要研究方向为自适应控制和最优控制. E-mail: 17863338853@163.com

    富月:东北大学流程工业综合自动化国家重点实验室教授. 2009年获得东北大学控制理论与控制工程专业博士学位. 主要研究方向为复杂工业过程自适应控制, 智能解耦控制, 近似动态规划和工业过程运行控制. 本文通信作者. E-mail: fuyue@mail.neu.edu.cn

Adaptive Optimal Switching Control of Nonlinear Systems

Funds: Supported by National Natural Science Foundation of China (62333004, 61991403, 61991400, 61873052)
More Information
    Author Bio:

    MAO Yan-Ling Master student at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. She received her bachelor degree from Qufu Normal University in 2020. Her research interest covers adaptive control and optimal control

    FU Yue Professor at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. She received her Ph.D. degree in control theory and control engineer from Northeastern University in 2009. Her research interest covers adaptive control of complex industrial processes, intelligent decoupling control, approximate dynamic programming, and industrial operational control. Corresponding author of this paper

  • 摘要: 针对具有未知动态和M个平衡点的连续时间非线性系统, 将线性自适应最优切换控制器和未建模动态补偿器相结合, 基于嵌入转换技术和近似动态规划思想, 提出一种自适应最优切换控制方法. 首先在非线性系统的M个平衡点建立M个线性化模型, 当模型参数已知时, 提出由线性最优切换控制器、切换准则、未建模动态补偿器以及非线性系统组成的控制系统结构; 当模型参数未知时, 在每个平衡点附近采集输入和状态数据, 利用黎卡提方程的迭代求解公式、最小二乘方法、极小值原理以及二次规划技术得到非线性系统的自适应最优切换控制器和最优切换序列; 最后进行仿真实验, 实验结果验证了所提方法的有效性、优越性和实际可应用性.
  • 图  1  $ A_i $和$ B_i $已知时的控制系统结构

    Fig.  1  Control system structure when $ A_i $ and $ B_i $ are known

    图  2  自适应最优切换控制器设计算法流程

    Fig.  2  Flow chart of adaptive optimal switching control algorithm

    图  3  采用最优切换控制器时系统的状态

    Fig.  3  State curves of the system when using the optimal switching controller

    图  4  采用最优切换控制器时系统的控制输入

    Fig.  4  Input curves of the system when using the optimal switching controller

    图  5  采用最优切换控制器时系统的最优切换序列

    Fig.  5  Optimal switching sequence of the system when using the optimal switching controller

    图  6  采用最优控制器时系统的状态

    Fig.  6  State curves of the system when using the optimal controller

    图  7  采用最优控制器时系统的控制输入

    Fig.  7  Input curves of the system when using the optimal controller

    图  8  采用自适应最优切换控制器时系统的状态

    Fig.  8  The state curves of the system when usingthe adaptive optimal switching controller

    图  9  采用自适应最优切换控制器时系统的控制输入

    Fig.  9  The input curves of the system when usingthe adaptive optimal switching controller

    图  10  采用自适应最优切换控制器时系统的切换序列

    Fig.  10  The switching sequence of the system when using the adaptive optimal switching controller

    图  11  采用自适应最优控制器时系统的状态

    Fig.  11  State curves of the system when usingthe adaptive optimal controller

    图  12  采用自适应最优控制器时系统的控制输入

    Fig.  12  Input curves of the system when usingthe adaptive optimal controller

    图  13  双容水箱结构

    Fig.  13  Structure of the coupled-tank

    图  14  采用自适应最优切换控制器时水箱的液位

    Fig.  14  Levels of the coupled-tank when usingthe adaptive optimal switching controller

    图  15  采用自适应最优切换控制器时水箱的控制输入

    Fig.  15  Input curves of the coupled-tank when usingthe adaptive optimal switching controller

    图  16  采用自适应最优切换控制器时水箱的切换序列

    Fig.  16  Switching sequence of the coupled-tank when using the adaptive optimal switching controller

    图  17  采用自适应最优控制器时水箱的液位

    Fig.  17  Levels of the coupled-tank when usingthe adaptive optimal controller

    图  18  采用自适应最优控制器时水箱的控制输入

    Fig.  18  Input curves of the coupled-tank when usingthe adaptive optimal controller

    表  1  模型中涉及的符号含义及取值

    Table  1  The symbol meaning and value involved in the model

    符号含义取值
    $K_{p1}$水泵1增益$3.3$
    $K_{p2}$水泵2增益$3.3$
    $A_{o1}$漏水孔1的横截面积$0.1781\;\text{cm}^{2}$
    $A_{o2}$漏水孔2的横截面积$0.1781\;\text{cm}^\text{2}$
    $A_{t1}$水罐1的横截面积$15.5179\;\text{cm}^\text{2}$
    $A_{t2}$水罐2的横截面积$15.5179\;\text{cm}^\text{2}$
    $g$重力加速度$981\;\text{cm/s}^2$
    下载: 导出CSV
  • [1] Lei J, Khalil H K. Feedback linearization for nonlinear systems with time-varying input and output delays by using high-gain predictors. IEEE Transactions on Automatic Control, 2016, 61(8): 2262-2268 doi: 10.1109/TAC.2015.2491719
    [2] Wu Y Q, Isidori A, Lu R Q, Khalil H K. Performance recovery of dynamic feedback-linearization methods for multivariable nonlinear systems. IEEE Transactions on Automatic Control, 2020, 65(4): 1365-1380 doi: 10.1109/TAC.2019.2924176
    [3] Wang N, Tao F, Fu Z, Song S. Adaptive fuzzy control for a class of stochastic strict feedback high-order nonlinear systems with full-state constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 205-213 doi: 10.1109/TSMC.2020.2996635
    [4] Fu Z, Wang N, Song S, Wang T. Adaptive fuzzy finite-time tracking control of stochastic high-order nonlinear systems with a class of prescribed performance. IEEE Transactions on Fuzzy Systems, 2022, 30(1): 88-96 doi: 10.1109/TFUZZ.2020.3032776
    [5] Banks S P, Cimen T. Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica, 2004, 40(11): 1845-1863 doi: 10.1016/j.automatica.2004.05.015
    [6] Fu Y, Chai T Y. Neural-network-based nonlinear adaptive dynamical decoupling control. IEEE transactions on neural networks, 2007, 18(3): 921-925 doi: 10.1109/TNN.2007.891588
    [7] Fu Y, Chai T Y. Self-tuning control with a filter and a neural compensator for a class of nonlinear systems. IEEE transactions on neural networks and learning systems, 2013, 24(5): 837-843 doi: 10.1109/TNNLS.2013.2238638
    [8] Chai T Y, Zhang Y J, Wang H, Su C Y, Sun J. Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control. IEEE transactions on neural networks, 2011, 22(12): 2154-2172 doi: 10.1109/TNN.2011.2167685
    [9] Jia Y, Chai T Y. A data-driven dual-rate control method for a heat exchanging process. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4158-4168 doi: 10.1109/TIE.2016.2608878
    [10] Tan C, Tao G, Qi R Y, Yang H. A direct MRAC based multivariable multiple-model switching control scheme. Automatica, 2017, 84: 190-198 doi: 10.1016/j.automatica.2017.07.020
    [11] Narendra K S, Cheng X. Adaptive control of discrete-time systems using multiple models. IEEE Transactions on Automatic Control, 2000, 45(9): 1669-1686 doi: 10.1109/9.880617
    [12] Fu Y, Chai T Y. Nonlinear multivariable adaptive control using multiple models and neural networks. Automatica, 2007, 43(6): 1101-1110 doi: 10.1016/j.automatica.2006.12.010
    [13] Kuipers M, Ioannou P. Multiple model adaptive control with mixing. IEEE Transactions on Automatic Control, 2010, 55(8): 1822-1836 doi: 10.1109/TAC.2010.2042345
    [14] Han Z, Narendra K S. New concepts in adaptive control using multiple models. IEEE Transactions on Automatic Control, 2012, 57(1): 78-89 doi: 10.1109/TAC.2011.2152470
    [15] Huang M, Wang X, Wang Z L. Multiple model adaptive control for a class of linear-bounded nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(1): 271-276 doi: 10.1109/TAC.2014.2323161
    [16] Chaudhuri B, Majumder R, Pal B C. Application of multiple-model adaptive control strategy for robust damping of interarea oscillations in power system. IEEE Transactions on Control Systems Technology, 2004, 12(5): 727-736 doi: 10.1109/TCST.2004.833409
    [17] Karimi A, Landau I D. Robust adaptive control of a flexible transmission system using multiple models. IEEE Transactions on Control Systems Technology, 2000, 8(2): 321-331 doi: 10.1109/87.826803
    [18] Chai T Y, Zhai L F, Yue H. Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems. Journal of Process Control, 2011, 21(3): 351-366 doi: 10.1016/j.jprocont.2010.11.007
    [19] Ghaffarzdeh H, Mehrizi-Sani A. Mitigation of subsynchronous resonance induced by a type III wind system. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1717-1727 doi: 10.1109/TSTE.2019.2938014
    [20] Leon A E, Amodeo S J, Mauricio J M. Enhanced compensation filter to mitigate subsynchronous oscillations in series-compensated DFIG-based wind farms. IEEE Transactions on Power Delivery, 2021, 36(6): 3805-3814 doi: 10.1109/TPWRD.2021.3049318
    [21] Wu G Y, Sun J, Chen J. Optimal linear quadratic regulator of switched systems. IEEE Transactions on Automatic Control, 2019, 64(7): 2898-2904 doi: 10.1109/TAC.2018.2872204
    [22] Kleinman D. On an iterative technique for Riccati equation computations. IEEE Transactions on Automatic Control, 1968, 13(1): 114-115 doi: 10.1109/TAC.1968.1098829
    [23] Jiang Z P, Jiang Y. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 2012, 48(10): 2699-2704 doi: 10.1016/j.automatica.2012.06.096
    [24] Fu Y, Chen W, Fu J, A new optimal tracking controller of linear strongly coupled systems and its applications, IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 1387-1391 doi: 10.1109/TCSII.2021.3122434
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  341
  • PDF下载量:  384
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 录用日期:  2023-02-24
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回