2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免时间戳交互的无线传感网隐含节点同步参数估计算法

王恒 彭政岑 马文巧 李敏

王恒, 彭政岑, 马文巧, 李敏. 免时间戳交互的无线传感网隐含节点同步参数估计算法. 自动化学报, 2022, 48(11): 2788−2796 doi: 10.16383/j.aas.c220062
引用本文: 王恒, 彭政岑, 马文巧, 李敏. 免时间戳交互的无线传感网隐含节点同步参数估计算法. 自动化学报, 2022, 48(11): 2788−2796 doi: 10.16383/j.aas.c220062
Wang Heng, Peng Zheng-Cen, Ma Wen-Qiao, Li Min. Synchronization parameter estimation algorithm of silent node in wireless sensor networks with timestamp-free exchange. Acta Automatica Sinica, 2022, 48(11): 2788−2796 doi: 10.16383/j.aas.c220062
Citation: Wang Heng, Peng Zheng-Cen, Ma Wen-Qiao, Li Min. Synchronization parameter estimation algorithm of silent node in wireless sensor networks with timestamp-free exchange. Acta Automatica Sinica, 2022, 48(11): 2788−2796 doi: 10.16383/j.aas.c220062

免时间戳交互的无线传感网隐含节点同步参数估计算法

doi: 10.16383/j.aas.c220062
基金项目: 国家自然科学基金 (61972061), 重庆市自然科学基金杰出青年基金 (cstc2019jcyjjqX0012), 重庆基础研究与前沿探索项目 (cstc2021ycjh-bgzxm0017)资助
详细信息
    作者简介:

    王恒:重庆邮电大学自动化学院教授. 2010年获得重庆大学博士学位. 主要研究方向为工业物联网, 无线传感器网络和时间同步. 本文通信作者. E-mail: wangheng@cqupt.edu.cn

    彭政岑:重庆邮电大学自动化学院硕士研究生. 主要研究方向为无线传感器网络, 时间同步. E-mail: pengzhengcen_pzc@163.com

    马文巧:重庆邮电大学自动化学院硕士研究生. 主要研究方向为无线传感器网络, 时间同步. E-mail: mawenqiaoemail@163.com

    李敏:重庆邮电大学自动化学院副教授. 2014年获得重庆大学博士学位. 主要研究方向为无线传感器网络, 无线功率传输和无人机. E-mail: limin@cqupt.edu.cn

Synchronization Parameter Estimation Algorithm of Silent Node in Wireless Sensor Networks With Timestamp-free Exchange

Funds: Supported by National Natural Science Foundation of China (61972061), Natural Science Foundation of Chongqing, for Distinguished Young Scholars (cstc2019jcyjjqX0012), and Fundamental Research and Frontier Exploration Program of Chongqing (cstc2021ycjh-bgzxm0017)
More Information
    Author Bio:

    WANG Heng Professor at the College of Automation, Chongqing University of Posts and Telecommunications. He received his Ph.D. degree from Chongqing University in 2010. His research interest covers industrial internet of things, wireless sensor networks, and time synchronization. Corresponding author of this paper

    PENG Zheng-Cen Master student at the College of Automation, Chongqing University of Posts and Telecommunications. Her research interest covers wireless sensor networks and time synchronization

    MA Wen-Qiao Master student at the College of Automation, Chongqing University of Posts and Telecommunications. Her research interest covers wireless sensor networks and time synchronization

    LI Min Associate professor at the College of Automation, Chongqing University of Posts and Telecommunications. She received her Ph.D. degree from Chongqing University in 2014. Her research interest covers wireless sensor networks, wireless power transfer, and unmanned aerial vehicle

  • 摘要: 能效是无线传感网(Wireless sensor networks, WSNs)时间同步机制设计时需考虑的一个关键因素. 近年来, 隐含同步和免时间戳同步两种低功耗同步机制备受关注. 前者利用监听方式节省了发送同步信息所带来的能耗; 后者则通过接收端的定时响应, 无需在交互过程中传递时间戳, 减少了能量开销. 将免时间戳同步与隐含同步相结合, 能够进一步降低无线传感网同步功能实施所导致的额外能耗. 但目前免时间戳交互下的隐含节点只能估计时钟漂移, 无法估计时钟偏移. 针对该问题, 提出了一种基于最大似然估计(Maximum likelihood estimation, MLE)的免时间戳同步参数估计算法, 实现对隐含节点时钟漂移和偏移参数的联合估计, 并推导获得了对应估计器的性能界限. 仿真结果验证了所提估计器的有效性.
  • 图  1  网络结构图

    Fig.  1  Network structure

    图  2  节点$Q$监听节点$O$与节点$P$之间的$N$轮免时间戳交互

    Fig.  2  The $N$ rounds of timestamp-free exchange between node $O$ and $P$ with node $Q$ overhearing them

    图  3  隐含节点$Q$时钟漂移估计${{\hat{\alpha }}^{\left(QO \right)}}$的MSE与CRLB

    Fig.  3  MSE and CRLB of estimated clock skew ${{\hat{\alpha }}^{\left(QO \right)}}$ for silent node $Q$

    图  4  隐含节点$Q$时钟偏移估计${{\hat{\vartheta }}^{\left(QO \right)}}$的MSE与CRLB

    Fig.  4  MSE and CRLB of estimated clock offset ${{\hat{\vartheta }}^{\left(QO \right)}}$ for silent node $Q$

    图  5  不同系数$\xi $下时钟漂移估计器性能对比结果

    Fig.  5  The performance comparison results of clock skew estimator under different coefficient $\xi $

    表  1  本文算法与隐含同步算法、免时间戳同步算法以及免时间戳和隐含同步结合算法的计算数量对比结果

    Table  1  The comparison results of the number of calculations among proposed algorithm, implicit synchronization algorithm, timestamp-free synchronization algorithm and combination algorithm of timestamp-free and implicit synchronization

    算法 参数 加减法数量 乘除法数量
    本文算法 时钟漂移 $2{N^2} + 14N - 3$ ${N^2} + 11N + 3$
    时钟偏移 $5{N^2} + 13N - 2$ $4{N^2} + 11N + 4$
    隐含同步算法 时钟漂移 $2{N^2} + 12N - 3$ $3N + 3$
    时钟偏移 $5{N^2} + 11N - 3$ ${N^2} + 3N + 3$
    免时间戳同步算法 时钟漂移 ${N^2} + 6N - 2$ $4N + 3$
    免时间戳与隐含同步结合算法 时钟漂移 $4{N^2} + 10N - 1$ $4{N^2} + 12N + 1$
    下载: 导出CSV
  • [1] Huan X T, Kim K S, Lee S, Lim E G, Marshall A. Improving multi-hop time synchronization performance in wireless sensor networks based on packet-relaying gateways with Per-Hop delay compensation. IEEE Transactions on Communications, 2021, 69(9): 6093-6105 doi: 10.1109/TCOMM.2021.3092038
    [2] 王頲, 徐小权, 唐晓铭, 黄庆卿, 李永福. 工业物联网中的精确时钟同步: 网络化控制理论观点. 自动化学报, 2021, 47(7): 1720-1738

    Wang Ting, Xu Xiao-Quan, Tang Xiao-Ming, Huang Qing-Qing, Li Yong-Fu. Precise clock synchronization in industrial internet of things: Networked control perspective. Acta Automatica Sinica, 2021, 47(7): 1720-1738
    [3] 张檬, 韩敏. 基于单向耦合法的不确定复杂网络间有限时间同步. 自动化学报, 2021, 47(7): 1624-1632

    Zhang Meng, Han Min. Finite-time synchronization between uncertain complex networks based on unidirectional coupling method. Acta Automatica Sinica, 2021, 47(7): 1624-1632
    [4] 王恒, 朱元杰, 杨杭, 王平. 基于优先级分类的工业无线网络确定性调度算法. 自动化学报, 2020, 46(2): 373-384

    Wang Heng, Zhu Yuan-Jie, Yang Hang, Wang Ping. Deterministic scheduling algorithm with priority classification for industrial wireless networks. Acta Automatica Sinica, 2020, 46(2): 373-384
    [5] 王恒, 刘清华, 李敏, 谭帅. 考虑链路重传的工业无线网络确定性调度算法. 自动化学报, 2021, 47(11): 2664-2674

    Wang Heng, Liu Qing-Hua, Li Min, Tan Shuai. Orchestration methods with determinacy in wireless industrial network by considering repeat transmissions. Acta Automatica Sinica, 2021, 47(11): 2664-2674
    [6] Jia P Y, Wang X B, Shen X M. Passive network synchronization based on concurrent observations in industrial IoT systems. IEEE Internet of Things Journal, 2021, 8(18): 14028-14038 doi: 10.1109/JIOT.2021.3070242
    [7] Noh K L, Serpedin E, Qaraqe K. A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization. IEEE Transactions on Wireless Communications, 2008, 7(9): 3318-3322 doi: 10.1109/TWC.2008.070343
    [8] Chaudhari Q M, Serpedin E, Qaraqe K. On minimum variance unbiased estimation of clock offset in a two-way message exchange mechanism. IEEE Transactions on Information Theory, 2010, 56(6): 2893-2904 doi: 10.1109/TIT.2010.2046233
    [9] Chaudhari Q M, Serpedin E, Kim J S. Energy-efficient estimation of clock offset for inactive nodes in wireless sensor networks. IEEE Transactions on Information Theory, 2010, 56(1): 582-596 doi: 10.1109/TIT.2009.2034817
    [10] Wang H, Zeng H Y, Wang P. Linear estimation of clock frequency offset for time synchronization based on overhearing in wireless sensor networks. IEEE Communications Letters, 2016, 20(2): 288-291 doi: 10.1109/LCOMM.2015.2510645
    [11] Wang H, Zeng H Y, Li M, Wang B G, Wang P. Maximum likelihood estimation of clock skew in wireless sensor networks with periodical clock correction under exponential delays. IEEE Transactions on Signal Processing, 2017, 65(10): 2714-2724 doi: 10.1109/TSP.2017.2675863
    [12] Liu G P, Yan S F, Mao L L. Receiver-only-based time synchronization under exponential delays in underwater wireless sensor networks. IEEE Internet of Things Journal, 2020, 7(10): 9995-10009 doi: 10.1109/JIOT.2020.2988695
    [13] Brown D R, Klein A G. Precise timestamp-free network synchronization. In: Proceedings of the 2013 Annual Conference on Information Sciences and Systems (CISS). Baltimore, MD, USA: IEEE, 2013. 1−6
    [14] Etzlinger B, Palaoro N, Haselmayr W, Rudic B, Springer A. Timestamp free synchronization with sub-tick accuracy in the presence of discrete clocks. IEEE Transactions on Wireless Communications, 2017, 16(2): 771-783 doi: 10.1109/TWC.2016.2630063
    [15] Wang H, Yu F, Li M, Zhong Y. Clock skew estimation for timestamp-free synchronization in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 2021, 17(1): 90-99 doi: 10.1109/TII.2020.2975289
    [16] Wang H, Gong P F, Yu F, Li M. Clock offset and skew estimation using hybrid one-way message dissemination and two-way timestamp free synchronization in wireless sensor networks. IEEE Communications Letters, 2020, 24(12): 2893-2897 doi: 10.1109/LCOMM.2020.3019521
    [17] Phan L A, Kim T, Kim T. Robust neighbor-aware time synchronization protocol for wireless sensor network in dynamic and hostile environments. IEEE Internet of Things Journal, 2020, 8(3): 1934-1945
    [18] Zhao S, Zhang X P, Cui X W, Lu Q L. A new TOA localization and synchronization system with virtually synchronized periodic asymmetric ranging network. IEEE Internet of Things Journal, 2021, 8(11): 9030-9044 doi: 10.1109/JIOT.2021.3055677
    [19] Shi F R, Li H L, Yang S X, Tuo X G, Lin M S. Novel maximum likelihood estimation of clock skew in one-way broadcast time synchronization. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9948-9957 doi: 10.1109/TIE.2019.2955427
    [20] Steven M K. Fundamentals of Statistical Signal Processing, Vol I: Estimation Theory. Bergen County: Prentice-Hall, 1993. 22−35
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  102
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-22
  • 录用日期:  2022-05-17
  • 网络出版日期:  2022-07-10
  • 刊出日期:  2022-11-22

目录

    /

    返回文章
    返回