2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电网线路传输安全的电力市场分布式交易模型研究

李远征 张虎 刘江平 赵勇 连义成

李远征, 张虎, 刘江平, 赵勇, 连义成. 基于电网线路传输安全的电力市场分布式交易模型研究. 自动化学报, 2024, 50(10): 1−15 doi: 10.16383/j.aas.c211244
引用本文: 李远征, 张虎, 刘江平, 赵勇, 连义成. 基于电网线路传输安全的电力市场分布式交易模型研究. 自动化学报, 2024, 50(10): 1−15 doi: 10.16383/j.aas.c211244
Li Yuan-Zheng, Zhang Hu, Liu Jiang-Ping, Zhao Yong, Lian Yi-Cheng. Research on distributed power market trading model based on grid line transmission security. Acta Automatica Sinica, 2024, 50(10): 1−15 doi: 10.16383/j.aas.c211244
Citation: Li Yuan-Zheng, Zhang Hu, Liu Jiang-Ping, Zhao Yong, Lian Yi-Cheng. Research on distributed power market trading model based on grid line transmission security. Acta Automatica Sinica, 2024, 50(10): 1−15 doi: 10.16383/j.aas.c211244

基于电网线路传输安全的电力市场分布式交易模型研究

doi: 10.16383/j.aas.c211244
基金项目: 国家电网总部科技项目(1400-202099523A-0-0-00)资助
详细信息
    作者简介:

    李远征:华中科技大学人工智能与自动化学院副教授. 主要研究方向为人工智能及其在智能电网中的应用, 深度学习, 强化学习和大数据分析. E-mail: Yuanzheng_Li@hust.edu.cn

    张虎:华中科技大学人工智能与自动化学院硕士研究生. 主要研究方向为电力市场交易, 电力系统优化. E-mail: dugujjiujian@gmail.com

    刘江平:湖北电力交易中心有限公司高级工程师. 主要研究方向为电力市场, 电力调度. E-mail: hzxjj@foxmail.com

    赵勇:华中科技大学人工智能与自动化学院教授. 主要研究方向为决策理论, 大型工程项目管理, 社会经济系统的建模与仿真和系统分析与集成. 本文通信作者. E-mail: zhiwei98530@hust.edu.cn

    连义成:华中科技大学人工智能与自动化学院博士研究生. 主要研究方向为新能源接入的电力系统机组组合与经济调度. E-mail: hust2017l@163.com

Research on Distributed Power Market Trading Model Based on Grid Line Transmission Security

Funds: Supported by Science and Technology Project of State Grid Headquarters (1400-202099523A-0-0-00)
More Information
    Author Bio:

    LI Yuan-Zheng Associate professor at the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology. His research interest covers artificial intelligence and its application in smart grid, deep learning, reinforcement learning, and big data analysis

    ZHANG Hu Master student at the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology. His research interest covers power market trading and power system optimization

    LIU Jiang-Ping Senior Engineer of Hubei Electric Power Exchange Center Limited Company. His research interest covers power market and power dispatching

    ZHAO Yong Professor at the School of Artificial Intelligence and Automation, Hua-zhong University of Science and Technology. His research interest covers decision-making theories, large-scale engineering project management, modeling and simulation of social economic systems, and system analysis and integration. Corresponding author of this paper

    LIAN Yi-Cheng Ph.D. candidate at the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology. His research interest covers power system unit commitment and economic dispatch renewable energy

  • 摘要: 电力市场分布式交易模型可有效缓解传统集中模型下市场主体的隐私安全等问题, 但难以在保障市场主体收益和电力系统安全稳定运行的同时, 实现社会福利最大化. 因此, 基于电网线路传输安全, 首先以社会福利最大化为目标, 构建集中式交易模型, 并采用拉格朗日乘子法和对偶定理, 将其等价分解为各市场主体自身利益最大化的分布式交易模型. 在此基础上, 设计2种适用于不同情形的分布式交易方法, 并构造电网安全成本影响市场主体的决策, 从而保证电网线路传输安全. 最后, 基于算例分析, 验证了2种方法的有效性.
  • 图  1  电力市场中分布式交易

    Fig.  1  Distributed trading in the power market

    图  2  发电成本和购电费用曲线

    Fig.  2  Power generation and power purchase cost

    图  3  IEEE 9节点电力系统拓扑结构

    Fig.  3  IEEE 9 bus power system topology

    图  4  2种交易方法求得的社会福利对比

    Fig.  4  Comparison of social welfare obtained by the 2 trading methods

    图  5  2种交易方法求解结果间的残差

    Fig.  5  Residuals of the solution results of the 2 trading methods

    图  6  2个案例中, 各线路潮流的对比

    Fig.  6  Comparison of the power flow of each grid line in 2 cases

    图  7  情形1下, 2种方法求得的各发电商的出力

    Fig.  7  Power generation of each generator obtained by the 2 methods in scenario 1

    图  8  情形2下, 2种方法求得各发电商的出力

    Fig.  8  Power generation of each generator obtained by the 2 methods in scenario 2

    图  9  IEEE 33节点电力系统拓扑结构

    Fig.  9  IEEE 33 bus power system topology

    图  10  在IEEE 33节点电力系统中, 2种交易方法求解结果的残差

    Fig.  10  Residuals of the solution results of the 2 trading models in IEEE 33 bus power system

    图  11  情形1下, 2种方法求得的各发电商的出力

    Fig.  11  Power generation of each generator obtained by the methods in scenario 1

    图  12  情形2下, 2种方法求得的各发电商的出力

    Fig.  12  Power generation of each generator obtained by the 2 methods in scenario 2

    图  13  情形1下, 3种方法的迭代求解结果

    Fig.  13  The iterative solution results of the 3 methods in scenario 1

    图  14  情形2下, 3种方法的迭代求解结果

    Fig.  14  The iterative solution results of the 3 methods in scenario 2

    表  1  2种分布式交易情形下, IEEE 9节点电力系统的发电商出力上限和下限(MW)

    Table  1  Upper and lower limits on generator output for IEEE 9 bus power system in 2 distributed trading scenarios (MW)

    发电商 $G_1$ $G_2$ $G_3$
    情形1 $p_{G,i}^{\max }$ 350 290 400
    $p_{G,i}^{\min }$ 10 20 15
    情形2 $p_{G,i}^{\max }$ 120 100 140
    $p_{G,i}^{\min }$ 10 20 15
    下载: 导出CSV

    表  2  2种分布式交易情形下, IEEE 9节点电力系统的柔性负荷商需求上限和下限(MW)

    Table  2  Upper and lower limits on flexible loaders'demand for IEEE 9 bus power system in 2 distributed trading scenarios (MW)

    柔性负荷商 ${{D}_{4}}$ ${{D}_{5}}$ ${{D}_{6}}$ ${{D}_{7}}$ ${{D}_{8}}$ ${{D}_{9}}$
    情形1 $p_{D,j}^{\max }$ 150 100 145 140 150 170
    $p_{D,j}^{\min }$ 60 50 90 60 50 70
    情形2 $p_{D,j}^{\max }$ 150 90 100 140 150 150
    $p_{D,j}^{\min }$ 20 15 30 30 15 20
    下载: 导出CSV

    表  3  IEEE 9节点电力系统线路潮流上限(MW)

    Table  3  Upper limit of grid line power flow for IEEE 9 bus power system (MW)

    线路 1-4 4-6 6-9 3-9 9-8 8-7 7-2 7-5 5-4
    $P_{l}^{PF\max}$ 160 100 100 150 100 100 120 100 100
    下载: 导出CSV

    表  4  2种交易方法下, 各市场主体交易量对比 (MW)

    Table  4  Comparison of the trading volume of market entities obtained by the 2 trading methods (MW)

    交易量 集中式 分布式
    ${{G}_{1}}$ 155.374 155.376
    ${{G}_{2}}$ 97.747 97.747
    ${{G}_{3}}$ 126.912 126.918
    ${{D}_{4}}$ 59.998 60.002
    ${{D}_{5}}$ 50.010 50.007
    ${{D}_{6}}$ 90.007 90.007
    ${{D}_{7}}$ 60.006 60.006
    ${{D}_{8}}$ 50.009 50.006
    ${{D}_{9}}$ 70.012 70.006
    下载: 导出CSV

    表  5  IEEE 9节点电力系统下, 2种方法的迭代次数和 计算时间对比

    Table  5  Comparison of iterations and computation time of the 2 methods in IEEE 9 bus system

    情形 本文方法1 本文方法2
    迭代次数 计算时间(s) 迭代次数 计算时间(s)
    情形1 248 71.5 265 79.8
    情形2 216 60.2 52 15.7
    下载: 导出CSV

    表  6  IEEE 33节点电力系统中, 2个案例的 潮流对比(MW)

    Table  6  Comparison of the power flow in the 2 cases of the IEEE 33 bus power system (MW)

    线路 $P_{l}^{PF,\;{\rm{case} }\;1}$ $P_{l}^{PF,\;{\rm{case} }\;2}$ $P_{l}^{PF\max}$
    1-2 189.22 190.36 250
    2-3 145.40 78.52 250
    3-4 136.56 98.60 150
    4-5 58.56 56.30 250
    5-6 258.55 168.56 200
    6-7 59.87 43.69 250
    7-8 25.21 8.96 250
    8-9 62.17 56.18 250
    9-10 32.74 32.80 250
    10-11 62.15 57.71 150
    11-12 16.12 15.23 150
    12-13 30.06 34.89 200
    13-14 51.10 40.55 250
    14-15 218.53 188.37 200
    15-16 39.89 22.97 150
    16-17 101.01 59.95 150
    17-18 165.36 137.69 150
    2-19 74.80 60.84 150
    19-20 95.37 87.90 250
    20-21 212.80 183.99 200
    21-22 61.00 68.73 150
    3-23 58.97 60.04 150
    23-24 45.51 37.73 200
    24-25 75.72 43.37 250
    6-26 145.70 155.01 250
    26-27 169.74 125.79 150
    27-28 243.25 188.26 200
    28-29 135.98 97.89 150
    29-30 14.31 32.59 150
    30-31 34.64 44.72 250
    31-32 43.94 44.88 150
    32-33 140.00 122.20 150
    21-8 122.87 99.63 150
    9-15 87.32 65.97 150
    12-22 120.66 156.98 200
    18-33 35.62 40.33 200
    25-29 158.77 142.65 200
    下载: 导出CSV

    表  7  IEEE 33节点系统下, 2种方法迭代次数和 计算时间对比

    Table  7  Comparison of iterations and computation time of the 2 methods in IEEE 33 bus system

    情形 本文方法1 本文方法2
    迭代次数 计算时间(s) 迭代次数 计算时间(s)
    情形1 402 158.3 433 165.9
    情形2 374 143.3 86 32.6
    下载: 导出CSV

    表  8  情形1下, 3种方法的迭代次数和计算时间对比

    Table  8  Comparison of iterations and computation time of the 3 methods in scenario 1

    方法 迭代次数 计算时间(s)
    原始对偶方法 458 162.2
    F-ADMM方法 262 96.5
    方法1 402 158.3
    下载: 导出CSV

    表  9  情形2下, 3种方法的迭代次数和计算时间对比

    Table  9  Comparison of iterations and computation time of the 3 methods in scenario 2

    方法 迭代次数 计算时间(s)
    原始对偶方法 395 149.8
    F-ADMM方法 218 80.4
    方法2 86 32.6
    下载: 导出CSV
  • [1] 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 43(2): 176−194 doi: 10.16383/j.aas.2017.c160390

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 43(2): 176−194 doi: 10.16383/j.aas.2017.c160390
    [2] 平作为, 何维, 李俊林, 杨涛. 基于稀疏学习的微电网负载建模. 自动化学报, 2020, 46(9): 1798−1808 doi: 10.16383/j.aas.c200154

    Ping Zuo-Wei, He Wei, Li Jun-Lin, Yang Tao. Sparse learning for load modeling in microgrids. Acta Automatica Sinica, 2020, 46(9): 1798−1808 doi: 10.16383/j.aas.c200154
    [3] 李玉帅, 李天义, 高炜, 高文忠. 基于异步动态事件触发通信策略的综合能源系统分布式协同优化运行方法. 自动化学报, 2020, 46(9): 1831−1843

    Li Yu-Shuai, Li Tian-Yi, Gao Wei, Gao Wen-Zhong. Distributed collaborative optimization operation approach for integrated energy system based on asynchronous and dynamic event-triggering communication strategy. Acta Automatica Sinica, 2020, 46(9): 1831−1843
    [4] Valero S, Ortiz M, Senabre C, Alvarez C, Franco F, Gabaldón A. Methods for customer and demand response policies selection in new electricity markets. IET Generation, Transmission & Distribution, 2007, 1(1): 104−110
    [5] 张晓萱, 薛松, 杨素, 屠俊明, 魏哲, 马莉. 售电侧市场放开国际经验及其启示. 电力系统自动化, 2016, 40(9): 1−8 doi: 10.7500/AEPS20151128001

    Zhang Xiao-Xuan, Xue Song, Yang Su, Tu Jun-Ming, Wei Zhe, Ma Li. International experience and lessons in power sales side market liberalization. Automation of Electric Power Systems, 2016, 40(9): 1−8 doi: 10.7500/AEPS20151128001
    [6] 单俊嘉, 胡俊杰, 吴界辰. 面向虚拟电厂能量管理的点对点市场交易机制与模型. 电网技术, 2020, 44(9): 3401−3408

    Shan Jun-Jia, Hu Jun-Jie, Wu Jie-Chen. Peer-to-peer market trading mechanism and model for virtual power plant energy management. Power System Technology, 2020, 44(9): 3401−3408
    [7] Iweh C D, Gyamfi S, Tanyi E, Effah-Donyina E. Distributed generation and renewable energy integration into the grid: Prerequisites, push factors, practical options, issues and merits. Energies, 2021, 14(17): 1−34
    [8] Bahrami S, Amini M. A decentralized trading algorithm for an electricity market with generation uncertainty. Applied Energy, 2018, 218: 520−532 doi: 10.1016/j.apenergy.2018.02.157
    [9] 田硕. 电动汽车聚合商参与日前市场的运营优化与竞标策略研究. 华北电力大学, 中国, 2018.

    Tian Shuo. Operation Optimization and Bidding Strategy of the Electric Vehicle Aggregator Participating in Day-ahead Electricity Markets [Master thesis], North China Electric Power Univ-ersity, China, 2018.
    [10] 袁晓冬, 费骏韬, 胡波, 张友旺, 葛乐. 资源聚合商模型下的分布式电源、储能与柔性负荷联合调度模型. 电力系统保护与控制, 2019, 47(22): 17−26

    Yuan Xiao-Dong, Fei Jun-Tao, Hu Bo, Zhang You-Wang, Ge Le. Joint scheduling model of distributed generation, energy storage and flexible load under resource aggregator mode. Power System Protection and Control, 2019, 47(22): 17−26
    [11] 林俐, 许冰倩, 王皓怀. 典型分布式发电市场化交易机制分析与建议. 电力系统自动化, 2019, 43(4): 1−8 doi: 10.7500/AEPS20180829001

    Lin Li, Xu Bing-Qian, Wang Hao-Huai. Analysis and recommendations of typical market-based distributed generation trading mechanisms. Automation of Electric Power Systems, 2019, 43(4): 1−8 doi: 10.7500/AEPS20180829001
    [12] 蒋嗣凡. 分布式光伏P2P交易机制和交易策略研究. 浙江大学, 中国, 2020.

    Jiang Si-Fan. Research on P2P Trading Mechanism and Strategy of Distributed PV Generation [Master thesis], Zhejiang University, China, 2020.
    [13] Paudel A, Chaudhari K, Chao L, Gooi H. Peer-to-peer energy trading in a prosumer based community microgrid: A game-theoretic model. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6087−6097 doi: 10.1109/TIE.2018.2874578
    [14] Zhang K, Troitzsch S, Hanif S, Hamacher T. Coordinated market design for peer-to-peer energy trade and ancillary services in distribution grids. IEEE Transactions on Smart Grid, 2020, 11(4): 2929−2941 doi: 10.1109/TSG.2020.2966216
    [15] Paudel A, Sampath L, Yang J, Gooi H. Peer-to-peer energy trading in smart grid considering power losses and network fees. IEEE Transactions on Smart Grid, 2020, 11(6): 4727−4737 doi: 10.1109/TSG.2020.2997956
    [16] Tushar W, Saha T K, Yuen C, Smith D, Poor H V. Peer-to-peer trading in electricity networks: An overview. IEEE Transactions on Smart Grid, 2020, 11(4): 3185−3200 doi: 10.1109/TSG.2020.2969657
    [17] 马腾, 刘洋, 刘俊, 蒋拯, 许立雄. 智能合约技术下微电网群电能分布式交易模型. 电力建设, 2021, 42(1): 41−48 doi: 10.12204/j.issn.1000-7229.2021.01.005

    Ma Teng, Liu Yang, Liu Jun, Jiang Zheng, Xu Li-Xiong. Distributed transaction model of electricity in multi-microgrid applying smart contract technology. Electric Power Construction, 2021, 42(1): 41−48 doi: 10.12204/j.issn.1000-7229.2021.01.005
    [18] Guerrero J, Chapman A, Verbi G. Decentralized P2P energy trading under network constraints in a low-voltage network. IEEE Transactions on Smart Grid, 2019, 10(5): 5163−5173 doi: 10.1109/TSG.2018.2878445
    [19] Khorasany M, Mishra Y, Ledwich G. A decentralized bilateral energy trading system for peer-to-peer electricity markets. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4646−4657 doi: 10.1109/TIE.2019.2931229
    [20] Morstyn T, Teytelboym A, Hepburn C, McCulloch M D. Integrating P2P energy trading with probabilistic distribution locational marginal pricing. IEEE Transactions on Smart Grid, 2020, 11(4): 3095−3106 doi: 10.1109/TSG.2019.2963238
    [21] Coffrin C, Knueven B, Holzer J, Vuffary M. The impacts of convex piecewise linear cost formulations on AC optimal power flow. Electric Power Systems Research, 2021, 199(1): 1−11
    [22] 王怡, 杨知方, 余娟, 赵唯嘉. 节点电价与对偶乘子的内在关联分析与扩展. 电力系统自动化, 2021, 45(6): 82−91

    Wang Yi, Yang Zhi-Fang, Yu Juan, Zhao Wei-Jia. Analysis and extension of internet relationship between locational marginal price and dual multiplier. Automation of Electric Power Systems, 2021, 45(6): 82−91
    [23] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine learning, 2011, 3(1): 1−12
    [24] Bertsekas D. Nonlinear Programming. Belmont: Athena Scientific, 1999. 234-244, 334
    [25] Ullah M H, Park J D. Peer-to-peer energy trading in transactive markets considering physical network constraints. IEEE Transactions on Smart Grid, 2021, 12(4): 3390−3403 doi: 10.1109/TSG.2021.3063960
  • 加载中
计量
  • 文章访问数:  424
  • HTML全文浏览量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 录用日期:  2022-04-28
  • 网络出版日期:  2022-07-21

目录

    /

    返回文章
    返回