A Generalized Proportional-integral Observer With Zero Assignment for Disturbance Rejection Residual Evaluation and Fault Detection
-
摘要: 针对一类存在周期性扰动的系统, 提出了一种新型的基于广义PI观测器零点配置的抗扰残差评估框架, 充分利用了广义PI观测器的零点可配置性, 通过调整传递函数矩阵在阻塞零点处的相位响应并利用该频点处矩阵的零特征向量对残差信号进行滤波, 实现了残差信号与周期性扰动的解耦. 此外, 还创新性地提出了一种基于矩阵条件数的优化目标函数, 改善了残差信号对故障的敏感性. 最后, 通过两轮自平衡小车的仿真对比实验和实物测试, 验证了所提方法在残差抑扰和故障检测方面的有效性.Abstract: For a class of systems subject to periodic disturbances, a disturbance rejection residual evaluation architecture based on the generalized proportional-integral observer with zero-configuration is proposed for fault detection. It can make full use of the zero configurability of the generalized proportional-integral observer and achieve decoupling of the residual signal from the periodic disturbances by adjusting the phase response of the transfer function matrix at the blocking zero and using the zero eigenvector of the transfer function matrix at the disturbance frequency to filter the residual signal. In addition, this paper also proposes a fault-sensitive optimization objective function based on the condition number. Finally, the effectiveness of the proposed method in terms of the disturbance rejection and fault detection is verified through simulated comparative experiments and physical tests on a two-wheeled self-balancing trolley.
-
表 1 残差特征和安全阈值对比
Table 1 Comparison of residual characteristics and safety thresholds
检测方法 均值$E\left(\tilde{r}_{k}\right)$ 标准差$\delta\left(\tilde{r}_{k}\right)$ 安全阈值$\pm 3\delta$ P观测器 −0.060 6.949 [−20.91, 20.79] PI观测器 −1.229 5.268 [−17.03, 14,58] 广义PI观测器 −0.694 1.510 [−5.22, 3.84] 广义PI观测器+实
系数增益向量−0.003 0.075 [−0.23, 0.22] -
[1] Bajic B, Rikalovic A, Suzic N, Piuri V. Industry 4.0 implementation challenges and opportunities: A managerial perspective. IEEE Systems Journal, 2021, 15(1): 546-559 doi: 10.1109/JSYST.2020.3023041 [2] White A, Karimoddini A, Karimadini M. Resilient fault diagnosis under imperfect observations-A need for industry 4.0 era. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1279-1288 doi: 10.1109/JAS.2020.1003333 [3] Agrawal V, Panigrahi B, Subbarao P. Increasing reliability of fault detection systems for industrial applications. IEEE Intelligent Systems, 2018, 33(3): 29-39 [4] Wu C Y, Guo C Q, Xie Z W, Ni, F L, Hong, L. A signal-based fault detection and tolerance control method of current sensor for PMSM drive. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9646-9657 doi: 10.1109/TIE.2018.2813991 [5] Pourbabaee B, Meskin N, Khorasani K. Sensor fault detection, isolation and identification using multiple model-based hybrid Kalman filter for gas turbine engines. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1184-1200 doi: 10.1109/TCST.2015.2480003 [6] Saucedo-Dorantes J J, Delgado-Prieto M, Osornio-Rios R A, Romero-Troncoso R D J. Industrial data-driven monitoring based on incremental learning applied to the detection of novel faults. IEEE Transactions on Industrial Informatics, 2020, 16(9): 5985-5995 doi: 10.1109/TII.2020.2973731 [7] Ibaraki S, Suryanarayanan S, Tomizuka M. Design of Luenberger state observers using fixed-structure $H_{\infty}$ optimization and its application to fault detection in lane-keeping control of automated vehicles. IEEE/ASME Transactions on Mechatronics, 2005, 10(1): 34-42 doi: 10.1109/TMECH.2004.842243[8] Jlassi I, Estima J O, et al. A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives. IEEE Transactions on Industry Applications, 2017, 53(3): 2894-2905 doi: 10.1109/TIA.2016.2616398 [9] 段广仁, 强文义. 线性系统的干扰解耦观测器设计. 自动化学报, 1994, (5): 548-552Duan Guang-Ren, Qiang Wen-Yi. Design of Luenberger function observers with disturbance decoupling. Acta Automatica Sinica, 1994, (5): 548-552 [10] Foo G, Zhang X, Vilathgamuwa D. A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3485-3495 doi: 10.1109/TIE.2013.2244537 [11] Naseri F, Kazemi Z, Arefi M and Farjah E. Fast discrimination of transformer magnetizing current from internal faults: an extended Kalman filter-based approach. IEEE Transactions on Power Delivery, 2017, 33(1): 110-118 [12] Li R C, Yang Y. Sliding-mode observer-based fault reconstruction for T-S fuzzy descriptor systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(8): 5046-5055 doi: 10.1109/TSMC.2019.2945998 [13] Liu M, Zhang L X, Shi P and Zhao Y X. Fault estimation sliding mode observer with digital communication constraints. IEEE Transactions on Automatic Control, 2018, 63(10): 3434-3441 doi: 10.1109/TAC.2018.2794826 [14] Meng Z, Cao Z C, Ye W. Robust fault detection and isolation based on finite-frequency $H_-/H_{\infty}$ unknown input observers and zonotopic threshold analysis. IEEE/CAA Journal of Automatica Sinica, 2019, 6(3): 750-759 doi: 10.1109/JAS.2019.1911492[15] 胡志坤, 孙岩, 姜斌, 何静, 张昌凡. 一种基于最优未知输入观测器的故障诊断方法.自动化学报, 2013, 39(8): 1225-1230Hu Zhi-Kun, Sun Yan, Jiang Bin, He Jing, Zhang Chang-Fan. An optimal unknown input observer-based fault diagnosis method. Acta Automatica Sinica, 2013, 39(8): 1225-1230 [16] Pertew A M, Marquez H J, Zhao Q. $H_{\infty}$ observer design for Lipschitz nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(7): 1211-1216 doi: 10.1109/TAC.2006.878784[17] Gao H J, Lam J, Xie L H and Wang C H. New approach to mixed $H_2/H_{\infty}$ filtering for polytopic discrete-time systems. IEEE Transactions on Signal Processing, 2005, 53(8): 3183-3192 doi: 10.1109/TSP.2005.851116[18] Liang D G, Yang Y, Li R and Liu R C. Finite-frequency $H_-/H_{\infty}$ unknown input observer-based distributed fault detection for multi-agent systems. Journal of the Franklin Institute, 2021, 358(6): 3258-3275 doi: 10.1016/j.jfranklin.2021.01.042[19] Zhong M Y, Ding S X, Zhou D H and He X. An $H_i/H_{\infty}$ optimization approach to event-triggered fault detection for linear discrete time systems. IEEE Transactions on Automatic Control, 2020, 65(10): 4464-4471 doi: 10.1109/TAC.2020.3006811[20] Chen W H, Yang J, Guo L and Li S H. Disturbance-observer-based control and related methods—An overview. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095 doi: 10.1109/TIE.2015.2478397 [21] Dai X W, Gao Z W, Breikin T and Wang H. Zero assignment for robust $H_2/H_{\infty}$ fault detection filter design. IEEE Transactions on Signal Processing, 2009, 57(4): 1363-1372 doi: 10.1109/TSP.2008.2010598[22] 代学武, 郑志达, 高莺, 崔东亮, 赵宏涛. 基于动态观测器零极点优化的网络控制系统故障检测. 控制与决策, 2021, 36(6): 1351-1360Dai Xue-Wu, Zheng Zhi-Da, Gao Ying, Cui Dong-Liang, Zhao Hong-Tao. Pole-zero optimization design of dynamic observer for fault detection of networked control systems. Journal of Control and Decision, 2021, 36(6): 1351-1360 [23] Hu Y X, Dai X W, Cui D L, Jia Z A. Zero-assignment and complex coefficient gain design of generalized proportional-integral observer for robust fault detection. Journal of the Franklin Institute, 2022, doi: 10.1016/j.jfranklin.2022.03.021,tobepublished [24] 代学武, 贾志安, 崔东亮, 柴天佑. 基于扩展PI抗扰补偿器的高精度时间同步控制. 自动化学报, 2022, 48(x): 1-12 doi: 10.16383/j.aas.c210676Dai Xue-Wu, Jia Zhi-An, Cui Dong-Liang, Chai Tian-You. Precision time synchronization by extended PI disturbance compensator. Acta Automatica Sinica, 2022, 48(x): 1-12 doi: 10.16383/j.aas.c210676, to be published [25] Bhatia R. Matrix Analysis, Springer, Berlin, 1996 [26] 高志伟, 代学武. 自平衡小车LQR-PID平衡与路径跟踪控制器设计. 控制工程, 2020, 27(4): 708-714Gao Zhi-Wei, Dai Xue-Wu. Balancing and path tracking controller design based on LQR-PID for self-balancing trolley. Control Engineering of China, 2020, 27(4): 708-714 [27] 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 39(11): 1933-1943 doi: 10.3724/SP.J.1004.2013.01933Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943 doi: 10.3724/SP.J.1004.2013.01933 -

计量
- 文章访问数: 117
- HTML全文浏览量: 23
- 被引次数: 0